FIRST EXAM

With Solutions

Closed book, one page of notes allowed.

Answer any 4 of the following 5 questions. Please state any additional assumptions you made, and show all work.

1. (25%) Use the graphical solution to determine the pH and complete solution composition for 1 liter of pure water to which you've added 10⁻³ moles of Sodium Citrate Dibasic (Na₂HCit). Graph paper is attached to this exam for this purpose.

You should notice from the way this is presented (Na₂HCit) and from the presence of three pKa values in the table, that this is a triprotic acid. The species are usually represented as H_3Cit , H_2Cit^- , $HCit^{-2}$ and Cit^{-3} . Note that you're adding the species, $HCit^{-2}$.

PBE:

 $2[H_3Cit]+[H_2Cit^-]+[H^+]=[OH^-]+[Cit^{-3}]$

Which reduces to:

 $[H_2Cit^-] = [Cit^{-3}]$

(25%) Determine the pH and solution composition of the above solution after you have added 10⁻² moles of the potassium salt of Propionic Acid (i.e., 10⁻²M KProp plus 10⁻³M Na₂HCit) in 1 liter of water. Please use a graphical solution for this one too.

PBE:

 $[HPro]+2[H_3Cit]+[H_2Cit^-]+[H^+]=[OH^-]+[Cit^{-3}]$

Which reduces to:

 $[HPro] = [Cit^{-3}]$

- 3. (25%) Determine the complete solution composition of:

 - a. a solution of 10^{-2} moles of Hydrogen Sulfide (H₂S) in 1 Liter of water b. the same solution in "a" to which you have also added 0.5×10^{-2} moles of Sodium Hydroxide (NaOH).

But this time use an algebraic solution. Please ignore ionic strength effects (i.e., assume infinite dilution). Remember to make simplifying assumptions

Part a

Since H_2S is a fully-protonated diprotic acid, it might be reasonable to assume it gives rise to an <u>Acidic Solution</u>. Based on this assumption, the simplified algebraic solution is:

$$[H^+] = \frac{-K_a + \sqrt{K_a^2 + 4K_aC}}{2}$$
$$[H^+] = \frac{-10^{-7.02} + \sqrt{10^{-7.02} + 4(10^{-7.02})10^{-2}}}{2}$$
$$[H^+] = 3.085x10^{-5}$$
$$\mathbf{pH} = \mathbf{4.5107}$$

now check assumption:

• [H⁺]>>[OH⁻]

In addition, since H_2S has a first pK that is fairly high (7.02), you could also assume it is a <u>Weak Acid</u> in addition to using the <u>Acidic Solution</u> assumption. Based on this assumption, the simplified algebraic solution is:

$$[H^+] = \sqrt{K_a C}$$

If you didn't remember this, you could derive it using the PBE or ENE [H⁺]=[OH⁻]+[HS⁻]+2[S⁻²]

And simplifying

 $[\mathrm{H}^+] \approx [\mathrm{HS}^-]$

And recognizing that the pKa is 7.02, so that under acidic conditions $pH \ll pK_a$

or

 $[H^+] >> K_a$ Which means that

And since

$$K_{1} = \frac{[HS^{-}][H^{+}]}{[H_{2}S]}$$
$$[HS^{-}] \approx \frac{K_{1}C}{[H^{+}]}$$
$$[H^{+}] \approx \frac{K_{1}C}{[H^{+}]}$$

 $\mathbf{C} \approx [\mathbf{H}_2 \mathbf{S}]$

And:

So:

 $[H^+] = \sqrt{K_1 C}$

Either way, substituting gives:

$$[H^+] = \sqrt{10^{-7.02} 10^{-2}}$$
$$[H^+] = \sqrt{10^{-9.02}}$$
$$[H^+] = 10^{-4.51}$$
$$pH = 4.51$$

now check assumptions:

- [H⁺]>>[OH⁻]
- [H₂S]>>[HS⁻]

<u>Part b</u>

Since this is an acid to which you've added a strong base, you cannot use a PBE, but you can use an ENE (CBE). You can also make the assumptons:

- [HS-]>>[OH-]
- [Na+]>>[H+]

Which when combined with the ENE, gives you the H-H Equation.

You might also recognize this right from the start. In this case, you've added half as much strong base as you had H_2S to begin. This is equivalent to a titration to the mid-point, where you are left with equal amounts of H_2S and HS^- . This is the perfect application for the Henderson-Hasselbalch (H-H) equation.

$$pH = pK_a + log\left(\frac{[A]}{[HA]}\right)$$

So in this case:

$$pH = 7.02 + log\left(\frac{[HS^-]}{[H_2S]}\right)$$
$$pH = 7.02 + log(1)$$

pH = 7.02

now check assumptions:

- [HS-]>>[OH-]
- [Na+]>>[H+]
- 4. (25%) Repeat problem #3a, but this time consider ionic strength effects, using the Güntelberg Approximation.

Recall the Güntelberg Approximation is:

$$logf = -0.5z^2 \frac{\sqrt{l}}{1+\sqrt{l}}$$

Which requires calculation of ionic strength (I): $I = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_$

 $U = \frac{1}{2} \sum M_i C_i$

Since in 3a, you can use the ENE or PBE to approximate the major charged species $[HS^-]=[H^+]$

So:

$$I = \frac{1}{2} \sum (3.085x10^{-5} + 3.085x10^{-5}) = 3.085x10^{-5}$$

Then

$$logf = -0.5 \frac{\sqrt{3.085 \times 10^{-5}}}{1 + \sqrt{3.085 \times 10^{-5}}} = -0.00276$$
$$f = 0.994$$

Now going back to problem we had

$$[H^+] = \frac{-K_a + \sqrt{K_a^2 + 4K_aC}}{2}$$

And we need to adjust for the new Ka based on ionic strength corrections

$$K_a = \frac{\{HS^-\}\{H^+\}}{\{H_2S\}} = \frac{[HS^-]f_{HS^-}\{H^+\}}{[H_2S]f_{H2S}}$$

You could go back to the original simplified equation from assuming an acidic solution and a weak acid

$$[HS^-] \approx \frac{K_1 C}{[H^+]}$$

And

 $[HS^-] \approx \frac{K_1 C f_{H+}}{\{H^+\}}$

And

And

$$[H^{+}] \approx \frac{K_1 C f_{H+}}{\{H^{+}\}}$$
$$\frac{\{H^{+}\}}{f_{H+}} \approx \frac{K_1 C f_{H+}}{\{H^{+}\}}$$

So:

$$\{H^+\} = \sqrt{K_1 C (f_{H+})^2} = f_{H+} \sqrt{K_1 C}$$

$$\{H^+\} = 0.994 \sqrt{10^{-7.02} 10^{-2}}$$

$$\{H^+\} = 3.066 \times 10^{-5}$$

$$\mathbf{pH} = \mathbf{4.513}$$

in other words, almost no difference with the ionic strength correction

- 5. (25%) True/False. Mark each one of the following statements with either a "T" or an "F", whichever is most accurate
 - a. **T** Mass defects are directly proportional to nuclear binding energy
 - b. **F** The value of α_0 plus α_1 must always equal 1 for any triprotic acid system
 - The standard assumption used for developing the Henderson-Hasselbach equation is that all negative ions are negligible
 - d. **T** The pH of the endpoint of the alkalinity titration is about 4.5
 - e. **F** Sulfuric acid completely donates its protons to water, regardless of the pH
 - f. **F** Non-carbonate hardness only exists in water without carbonates
 - g. T Bisulfide is an amphoteric substance

c.

h.

Increases in ionic strength have the greatest effect on species with zero **F** charge.

- i. **T** The principle of electroneutrality is always observed in aqueous solutions
- j. **F** The third most common gas in the atmosphere is carbon dioxide.

NAME	FORMULA	рК _а
Perchloric acid	$HClO_4 = H^+ + ClO_4^-$	-7 STRONG
Hydrochloric acid	$HCl = H^+ + Cl^-$	-3
Sulfuric acid	$H_2SO_4 = H^+ + HSO_4^-$	-3 (&2) ACIDS
Nitric acid	$HNO_3 = H^+ + NO_3^-$	-0
Hydronium ion	$H_{3}O^{+} = H^{+} + H_{2}O$	0
Trichloroacetic acid	$CCl_3COOH = H^+ + CCl_3COO^-$	0.70
Iodic acid	$HIO_3 = H^+ + IO_3^-$	0.8
Bisulfate ion	$HSO_4^- = H^+ + SO_4^{-2}$	2
Phosphoric acid	$H_3PO_4 = H^+ + H_2PO_4^-$	2.15 (&7.2,12.3)
o-Phthalic acid	$C_6H_4(COOH)_2 = H^+ + C_6H_4(COOH)COO^-$	2.89 (&5.51)
Citric acid (H ₃ Cit)	$C_{3}H_{4}OH(COOH)_{3} = H^{+} + C_{3}H_{4}OH(COOH)_{2}COO^{-}$	3.14 (&4.77, 6.4)
Hydrofluoric acid	$HF = H^+ + F^-$	3.2
Aspartic acid	$C_2H_6N(COOH)_2 = H^+ + C_2H_6N(COOH)COO^-$	3.86 (&9.82)
m-Hydroxybenzoic acid	$C_6H_4(OH)COOH = H^+ + C_6H_4(OH)COO^-$	4.06 (&9.92)
p-Hydroxybenzoic acid	$C_6H_4(OH)COOH = H^+ + C_6H_4(OH)COO^-$	4.48 (&9.32)
Nitrous acid	$HNO_2 = H^+ + NO_2^-$	4.5
Acetic acid	$CH_3COOH = H^+ + CH_3COO^-$	4.75
Citrate Monobasic (H ₂ Cit ⁻¹)	C ₃ H ₄ OH(COOH) ₂ COO ⁻ =H ⁺ +C ₃ H ₄ OHCOOH(COO) ₂ ⁻²	4.77
Propionic acid	$C_2H_5COOH = H^+ + C_2H_5COO^-$	4.87
o-Phthalate	$C_{6}H_{4}(COOH)COO^{-} = H^{+} + C_{6}H_{4}(COO_{-})_{2}$	5.51
Citrate Dibasic (HCit ⁻²)	$C_{3}H_{4}OHCOOH(COO)_{2}^{-2}=H^{+}+C_{3}H_{4}OH(COO)_{3}^{-3}$	6.4
Carbonic acid	$H_2CO_3 = H^+ + HCO_3^-$	6.35 (&10.33)
Hydrogen sulfide	$H_2S = H^+ + HS^-$	7.02 (&13.9)
Dihydrogen phosphate	$H_2PO4^- = H^+ + HPO4^{-2}$	7.2
Hypochlorous acid	$HOCl = H^+ + OCl^-$	7.5
Boric acid	$B(OH)_3 + H_2O = H^+ + B(OH)_4^-$	9.2 (&12.7,13.8)
Ammonium ion	$\mathrm{NH4}^{+} = \mathrm{H}^{+} + \mathrm{NH3}$	9.24
Hydrocyanic acid	$HCN = H^+ + CN^-$	9.3
p-Hydroxybenzoic acid	$C_{6}H_{4}(OH)COO^{-} = H^{+} + C_{6}H_{4}(O)COO^{-2}$	9.32
Phenol	$C_6H_5OH = H^+ + C_6H_5O^-$	9.9
m-Hydroxybenzoic acid	$C_{6}H_{4}(OH)COO^{-} = H^{+} + C_{6}H_{4}(O)COO^{-2}$	9.92
Bicarbonate ion	$HCO_{3}^{-} = H^{+} + CO_{3}^{-2}$	10.33
Monohydrogen phosphate	$HPO_4^{-2} = H^+ + PO_4^{-3}$	12.3
Bisulfide ion	$HS^{-} = H^{+} + S^{-2}$	13.9
Water	$H_2O = H^+ + OH^-$	14.00
Ammonia	$NH_3 = H^+ + NH_2^-$	23

Selected Acidity Constants (Aqueous Solution, 25° C, I = 0)

Methane

 $CH_4 = H^+ + CH_3^-$

Species	${}^{\scriptscriptstyle \Delta}\overline{H}^o_f$	${}^{\scriptscriptstyle \Delta}\overline{G}^o_f$
-	kcal/mole	kcal/mole
$Ca^{+2}(aq)$	-129.77	-132.18
$CaCO_3(s)$, calcite	-288.45	-269.78
CaO (s)	-151.9	-144.4
C(s), graphite	0	0
$CO_2(g)$	-94.05	-94.26
CO ₂ (aq)	-98.69	-92.31
$CH_4(g)$	-17.889	-12.140
$H_2CO_3(aq)$	-167.0	-149.00
HCO ₃ ⁻ (aq)	-165.18	-140.31
$CO_{3}^{-2}(aq)$	-161.63	-126.22
HOCl (aq)	-28.90	-19.10
OCl- (aq)	-25.60	-8.80
CH ₃ COOH	-116.79	-95.5
CH ₃ COO ⁻ , acetate	-116.84	-89.0
$\mathrm{H}^{+}\left(\mathrm{aq}\right)$	0	0
$H_{2}(g)$	0	0
HF (aq)	-77.23	-71.63
F ⁻ (aq)	-80.15	-67.28
Fe^{+2} (aq)	-21.0	-20.30
Fe^{+3} (aq)	-11.4	-2.52
$Fe(OH)_3(s)$	-197.0	-166.0
NO_3^- (aq)	-49.372	-26.43
$NH_3(g)$	-11.04	-3.976
NH ₃ (aq)	-19.32	-6.37
$\mathrm{NH_{4}^{+}}\left(\mathrm{aq}\right)$	-31.74	-19.00
HNO ₃ (aq)	-49.372	-26.41
$O_2(aq)$	-3.9	3.93
$O_{2}(g)$	0	0
OH ⁻ (aq)	-54.957	-37.595
$H_2O(g)$	-57.7979	-54.6357
$H_2O(l)$	-68.3174	-56.690
$PO_{4}^{-3}(aq)$	-305.30	-243.50
HPO_4^{-2} (aq)	-308.81	-260.34
$H_2PO_4^-$ (aq)	-309.82	-270.17
H ₃ PO ₄ (aq)	-307.90	-273.08
SO4 ⁻²	-216.90	-177.34
HS ⁻ (aq)	-4.22	3.01
H ₂ S(g)	-4.815	-7.892
H ₂ S(aq)	-9.4	-6.54

Guntelberg Approximation: $\boxed{\log f = -0.5z^2 \frac{\sqrt{I}}{1+\sqrt{I}}}$

