FIRST EXAM

With Solutions

Closed book, one page of notes allowed.
Answer any 4 of the following 5 questions. Please state any additional assumptions you made, and show all work.

Miscellaneous Information:

$$
\begin{aligned}
& \mathrm{R}=1.987 \mathrm{cal} / \text { mole }^{\circ} \mathrm{K}=8.314 \mathrm{~J} / \mathrm{mole}^{\circ} \mathrm{K} \\
& \text { Absolute zero }=-273.15^{\circ} \mathrm{C} \\
& 1 \text { joule }=0.239 \text { calories } \\
& 20^{\circ} \mathrm{C}=68^{\circ} \mathrm{F}
\end{aligned}
$$

1. (25%) Use the graphical solution to determine the pH and complete solution composition for 1 liter of pure water to which you've added 10^{-3} moles of Sodium Citrate Dibasic ($\mathrm{Na}_{2} \mathrm{HCit}$). Graph paper is attached to this exam for this purpose.

You should notice from the way this is presented $\left(\mathrm{Na}_{2} \mathrm{HCit}\right)$ and from the presence of three pKa values in the table, that this is a triprotic acid. The species are usually represented as $\mathrm{H}_{3} \mathrm{Cit}, \mathrm{H}_{2} \mathrm{Cit}^{-}, \mathrm{HCit}^{-2}$ and Cit^{-3}. Note that you're adding the species, HCit^{-2}.

PBE:

$$
2\left[\mathrm{H}_{3} \mathrm{Cit}\right]+\left[\mathrm{H}_{2} \mathrm{Cit}^{-}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{Cit}^{-3}\right]
$$

Which reduces to:

$$
\left[\mathrm{H}_{2} \mathrm{Cit}^{-}\right]=\left[\mathrm{Cit}^{-3}\right]
$$

2. (25%) Determine the pH and solution composition of the above solution after you have added 10^{-2} moles of the potassium salt of Propionic Acid (i.e., $10^{-2} \mathrm{M}$ KProp plus 10^{-} ${ }^{3} \mathrm{M} \mathrm{Na}_{2} \mathrm{HCit}$) in 1 liter of water. Please use a graphical solution for this one too.

PBE:

$$
[\mathrm{HPro}]+2\left[\mathrm{H}_{3} \mathrm{Cit}\right]+\left[\mathrm{H}_{2} \mathrm{Cit}^{-}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{Cit}^{-3}\right]
$$

Which reduces to:

$$
[\mathrm{HPro}]=\left[\mathrm{Cit}^{-3}\right]
$$

3. (25%) Determine the complete solution composition of:
a. a solution of 10^{-2} moles of Hydrogen Sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ in 1 Liter of water
b. the same solution in "a" to which you have also added 0.5×10^{-2} moles of Sodium Hydroxide (NaOH).
But this time use an algebraic solution. Please ignore ionic strength effects (i.e., assume infinite dilution). Remember to make simplifying assumptions

Part a

Since $\mathrm{H}_{2} \mathrm{~S}$ is a fully-protonated diprotic acid, it might be reasonable to assume it gives rise to an Acidic Solution. Based on this assumption, the simplified algebraic solution is:

$$
\begin{gathered}
{\left[H^{+}\right]=\frac{-K_{a}+\sqrt{K_{a}^{2}+4 K_{a} C}}{2}} \\
{\left[H^{+}\right]=\frac{-10^{-7.02}+\sqrt{10^{-7.02}+4\left(10^{-7.02}\right) 10^{-2}}}{2}} \\
{\left[H^{+}\right]=3.085 \times 10^{-5}} \\
\mathbf{p H}=\mathbf{4 . 5 1 0 7}
\end{gathered}
$$

now check assumption:

- $\left[\mathrm{H}^{+}\right] \gg\left[\mathrm{OH}^{-}\right]$

In addition, since $\mathrm{H}_{2} \mathrm{~S}$ has a first pK that is fairly high (7.02), you could also assume it is a Weak Acid in addition to using the Acidic Solution assumption. Based on this assumption, the simplified algebraic solution is:

$$
\left[H^{+}\right]=\sqrt{K_{a} C}
$$

If you didn't remember this, you could derive it using the PBE or ENE
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{HS}^{-}\right]+2\left[\mathrm{~S}^{-2}\right]$
And simplifying

$$
\left[\mathrm{H}^{+}\right] \approx\left[\mathrm{HS}^{-}\right]
$$

And recognizing that the pKa is 7.02 , so that under acidic conditions

$$
\mathrm{pH} \ll \mathrm{pK}_{\mathrm{a}}
$$

or

$$
\left[\mathrm{H}^{+}\right] \gg \mathrm{K}_{\mathrm{a}}
$$

Which means that

$$
\mathrm{C} \approx\left[\mathrm{H}_{2} \mathrm{~S}\right]
$$

And since

$$
\begin{gathered}
K_{1}=\frac{\left[H S^{-}\right]\left[H^{+}\right]}{\left[H_{2} S\right]} \\
{\left[H S^{-}\right] \approx \frac{K_{1} C}{\left[H^{+}\right]}}
\end{gathered}
$$

So:

$$
\left[H^{+}\right] \approx \frac{K_{1} C}{\left[H^{+}\right]}
$$

And:

$$
\left[H^{+}\right]=\sqrt{K_{1} C}
$$

Either way, substituting gives:

$$
\begin{gathered}
{\left[H^{+}\right]=\sqrt{10^{-7.02} 10^{-2}}} \\
{\left[H^{+}\right]=\sqrt{10^{-9.02}}} \\
{\left[H^{+}\right]=10^{-4.51}} \\
\mathbf{p H}=\mathbf{4 . 5 1}
\end{gathered}
$$

now check assumptions:

- $\left[\mathrm{H}^{+}\right] \gg\left[\mathrm{OH}^{-}\right]$
- $\left[\mathrm{H}_{2} \mathrm{~S}\right] \gg\left[\mathrm{HS}^{-}\right]$

Part b

Since this is an acid to which you've added a strong base, you cannot use a PBE, but you can use an ENE (CBE). You can also make the assumptons:

- [HS-]>>[OH-]
- $[\mathrm{Na}+] \gg[\mathrm{H}+]$

Which when combined with the ENE, gives you the H-H Equation.
You might also recognize this right from the start. In this case, you've added half as much strong base as you had $\mathrm{H}_{2} \mathrm{~S}$ to begin. This is equivalent to a titration to the mid-point, where you are left with equal amounts of $\mathrm{H}_{2} \mathrm{~S}$ and HS^{-}. This is the perfect application for the Henderson-Hasselbalch (H-H) equation.

$$
p H=p K_{a}+\log \left(\frac{[A]}{[H A]}\right)
$$

So in this case:

$$
\begin{gathered}
p H=7.02+\log \left(\frac{\left[H S^{-}\right]}{\left[H_{2} S\right]}\right) \\
p H=7.02+\log (1) \\
\boldsymbol{p H}=\mathbf{7 . 0 2}
\end{gathered}
$$

now check assumptions:

- [HS-]>>[OH-]
- $[\mathrm{Na}+] \gg[\mathrm{H}+]$

4. (25\%) Repeat problem \#3a, but this time consider ionic strength effects, using the Güntelberg Approximation.

Recall the Güntelberg Approximation is:

$$
\log f=-0.5 z^{2} \frac{\sqrt{I}}{1+\sqrt{I}}
$$

Which requires calculation of ionic strength (I):

$$
I=\frac{1}{2} \sum M_{i} C_{i}
$$

Since in 3a, you can use the ENE or PBE to approximate the major charged species
$\left[\mathrm{HS}^{-}\right]=\left[\mathrm{H}^{+}\right]$
So:

$$
I=\frac{1}{2} \sum\left(3.085 \times 10^{-5}+3.085 \times 10^{-5}\right)=3.085 \times 10^{-5}
$$

Then

$$
\begin{gathered}
\log f=-0.5 \frac{\sqrt{3.085 \times 10^{-5}}}{1+\sqrt{3.085 \times 10^{-5}}}=-0.00276 \\
f=0.994
\end{gathered}
$$

Now going back to problem we had

$$
\left[H^{+}\right]=\frac{-K_{a}+\sqrt{K_{a}^{2}+4 K_{a} C}}{2}
$$

And we need to adjust for the new Ka based on ionic strength corrections

$$
K_{a}=\frac{\left\{H S^{-}\right\}\left\{H^{+}\right\}}{\left\{H_{2} S\right\}}=\frac{\left[H S^{-}\right] f_{H S-}\left\{H^{+}\right\}}{\left[H_{2} S\right] f_{H 2 S}}
$$

You could go back to the original simplified equation from assuming an acidic solution and a weak acid

$$
\left[H S^{-}\right] \approx \frac{K_{1} C}{\left[H^{+}\right]}
$$

And

$$
\left[H S^{-}\right] \approx \frac{K_{1} C f_{H+}}{\left\{H^{+}\right\}}
$$

And

$$
\left[H^{+}\right] \approx \frac{K_{1} C f_{H+}}{\left\{H^{+}\right\}}
$$

And

$$
\frac{\left\{H^{+}\right\}}{f_{H+}} \approx \frac{K_{1} C f_{H+}}{\left\{H^{+}\right\}}
$$

So:

$$
\begin{gathered}
\left\{H^{+}\right\}=\sqrt{K_{1} C\left(f_{H+}\right)^{2}}=f_{H+} \sqrt{K_{1} C} \\
\left\{H^{+}\right\}=0.994 \sqrt{10^{-7.02} 10^{-2}} \\
\left\{H^{+}\right\}=3.066 \times 10^{-5} \\
\mathbf{p H}=\mathbf{4 . 5 1 3}
\end{gathered}
$$

in other words, almost no difference with the ionic strength correction
5. (25%) True/False. Mark each one of the following statements with either a "T" or an " F ", whichever is most accurate
a. T Mass defects are directly proportional to nuclear binding energy
b. $\quad \mathbf{F} \quad$ The value of α_{0} plus α_{1} must always equal 1 for any triprotic acid system The standard assumption used for developing the Henderson-Hasselbach c. \mathbf{F} equation is that all negative ions are negligible
d. $\quad \mathrm{T}$ The pH of the endpoint of the alkalinity titration is about 4.5
e. $\quad \mathbf{F}$ Sulfuric acid completely donates its protons to water, regardless of the pH
f. $\quad \mathbf{F}$ Non-carbonate hardness only exists in water without carbonates
g. T Bisulfide is an amphoteric substance

Increases in ionic strength have the greatest effect on species with zero
h. $\quad \mathbf{F}$ charge.
i. The principle of electroneutrality is always observed in aqueous solutions
j. $\quad \mathbf{F}$ The third most common gas in the atmosphere is carbon dioxide.

Selected Acidity Constants (Aqueous Solution, $25^{\circ} \mathrm{C}, \mathrm{I}=0$)

NAME	FORMULA	pK a
Perchloric acid	$\mathrm{HClO}_{4}=\mathrm{H}^{+}+\mathrm{ClO}_{4}^{-}$	-7 STRONG
Hydrochloric acid	$\mathrm{HCl}=\mathrm{H}^{+}+\mathrm{Cl}^{-}$	-3
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}$	-3 (\&2) ACIDS
Nitric acid	$\mathrm{HNO}_{3}=\mathrm{H}^{+}+\mathrm{NO}_{3}{ }^{-}$	-0
Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}$	0
Trichloroacetic acid	$\mathrm{CCl}_{3} \mathrm{COOH}=\mathrm{H}^{+}+\mathrm{CCl}_{3} \mathrm{COO}^{-}$	0.70
Iodic acid	$\mathrm{HIO}_{3}=\mathrm{H}^{+}+\mathrm{IO}_{3}^{-}$	0.8
Bisulfate ion	$\mathrm{HSO}_{4}^{-}=\mathrm{H}^{+}+\mathrm{SO}_{4}^{-2}$	2
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	2.15 (\&7.2,12.3)
o-Phthalic acid	$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})_{2}=\mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH}) \mathrm{COO}^{-}$	2.89 (\&5.51)
Citric acid ($\mathrm{H}_{3} \mathrm{Cit}$)	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{OH}(\mathrm{COOH})_{3}=\mathrm{H}^{+}+\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{OH}(\mathrm{COOH})_{2} \mathrm{COO}^{-}$	3.14 (\&4.77, 6.4)
Hydrofluoric acid	$\mathrm{HF}=\mathrm{H}^{+}+\mathrm{F}^{-}$	3.2
Aspartic acid	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}(\mathrm{COOH})_{2}=\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}(\mathrm{COOH}) \mathrm{COO}^{-}$	3.86 (\&9.82)
m-Hydroxybenzoic acid	$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COOH}=\mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COO}^{-}$	4.06 (\&9.92)
p-Hydroxybenzoic acid	$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COOH}=\mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COO}^{-}$	4.48 (\&9.32)
Nitrous acid	$\mathrm{HNO}_{2}=\mathrm{H}^{+}+\mathrm{NO}_{2}^{-}$	4.5
Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$	4.75
Citrate Monobasic ($\mathrm{H}_{2} \mathrm{Cit}^{-1}$)	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{OH}(\mathrm{COOH})_{2} \mathrm{COO}^{-}=\mathrm{H}^{+}+\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{OHCOOH}(\mathrm{COO})_{2}{ }^{-2}$	4.77
Propionic acid	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}=\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$	4.87
o-Phthalate	$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH}) \mathrm{COO}^{-}=\mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COO}-)_{2}$	5.51
Citrate Dibasic (HCit^{-2})	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{OHCOOH}(\mathrm{COO})_{2}{ }^{-2}=\mathrm{H}^{+}+\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{OH}(\mathrm{COO})_{3}{ }^{-3}$	6.4
Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}=\mathrm{H}^{+}+\mathrm{HCO}_{3}{ }^{-}$	6.35 (\&10.33)
Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}=\mathrm{H}^{+}+\mathrm{HS}^{-}$	7.02 (\&13.9)
Dihydrogen phosphate	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}=\mathrm{H}^{+}+\mathrm{HPO}_{4}{ }^{-2}$	7.2
Hypochlorous acid	$\mathrm{HOCl}=\mathrm{H}^{+}+\mathrm{OCl}^{-}$	7.5
Boric acid	$\mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}^{+}+\mathrm{B}(\mathrm{OH}) 4^{-}$	9.2 (\&12.7,13.8)
Ammonium ion	$\mathrm{NH}_{4}^{+}=\mathrm{H}^{+}+\mathrm{NH}_{3}$	9.24
Hydrocyanic acid	$\mathrm{HCN}=\mathrm{H}^{+}+\mathrm{CN}^{-}$	9.3
p-Hydroxybenzoic acid	$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COO}^{-}=\mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{O}) \mathrm{COO}^{-2}$	9.32
Phenol	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}=\mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$	9.9
m-Hydroxybenzoic acid	$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COO}^{-}=\mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{O}) \mathrm{COO}^{-2}$	9.92
Bicarbonate ion	$\mathrm{HCO}_{3}{ }^{-}=\mathrm{H}^{+}+\mathrm{CO}_{3}^{-2}$	10.33
Monohydrogen phosphate	$\mathrm{HPO}_{4}{ }^{-2}=\mathrm{H}^{+}+\mathrm{PO}_{4}^{-3}$	12.3
Bisulfide ion	$\mathrm{HS}^{-}=\mathrm{H}^{+}+\mathrm{S}^{-2}$	13.9
Water	$\mathrm{H}_{2} \mathrm{O}=\mathrm{H}^{+}+\mathrm{OH}^{-}$	14.00
Ammonia	$\mathrm{NH}_{3}=\mathrm{H}^{+}+\mathrm{NH}_{2}^{-}$	23

Methane	$\mathrm{CH}_{4}=\mathrm{H}^{+}+\mathrm{CH}_{3}{ }^{-}$	34

Species	${ }^{\Delta} \bar{H}_{f}^{o}$	${ }^{\Delta} \bar{G}_{f}^{o}$ kcal/mole
$\mathrm{Ca}^{+2}(\mathrm{aq})$	-129.77	-132.18
$\mathrm{CaCO}_{3}(\mathrm{~s})$, calcite	-288.45	-269.78
CaO (s)	-151.9	-144.4
C(s), graphite	0	0
$\mathrm{CO}_{2}(\mathrm{~g})$	-94.05	-94.26
$\mathrm{CO}_{2}(\mathrm{aq})$	-98.69	-92.31
$\mathrm{CH}_{4}(\mathrm{~g})$	-17.889	-12.140
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$	-167.0	-149.00
$\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})$	-165.18	-140.31
$\mathrm{CO}_{3}{ }^{-2}(\mathrm{aq})$	-161.63	-126.22
$\mathrm{HOCl}(\mathrm{aq})$	-28.90	-19.10
$\mathrm{OCl}-(\mathrm{aq})$	-25.60	-8.80
$\mathrm{CH}_{3} \mathrm{COOH}$	-116.79	-95.5
$\mathrm{CH}_{3} \mathrm{COO}^{-}$, acetate	-116.84	-89.0
$\mathrm{H}^{+}(\mathrm{aq})$	0	0
$\mathrm{H}_{2}(\mathrm{~g})$	0	0
HF (aq)	-77.23	-71.63
$\mathrm{F}^{-}(\mathrm{aq})$	-80.15	-67.28
$\mathrm{Fe}^{+2}(\mathrm{aq})$	-21.0	-20.30
$\mathrm{Fe}^{+3}(\mathrm{aq})$	-11.4	-2.52
$\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$	-197.0	-166.0
$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$	-49.372	-26.43
$\mathrm{NH}_{3}(\mathrm{~g})$	-11.04	-3.976
$\mathrm{NH}_{3}(\mathrm{aq})$	-19.32	-6.37
$\mathrm{NH}_{4}^{+}(\mathrm{aq})$	-31.74	-19.00
$\mathrm{HNO}_{3}(\mathrm{aq})$	-49.372	-26.41
$\mathrm{O}_{2}(\mathrm{aq})$	-3.9	3.93
$\mathrm{O}_{2}(\mathrm{~g})$	0	0
$\mathrm{OH}^{-}(\mathrm{aq})$	-54.957	-37.595
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-57.7979	-54.6357
$\mathrm{H}_{2} \mathrm{O}$ (1)	-68.3174	-56.690
$\mathrm{PO}_{4}{ }^{-3}(\mathrm{aq})$	-305.30	-243.50
$\mathrm{HPO}_{4}{ }^{-2}(\mathrm{aq})$	-308.81	-260.34
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$(aq)	-309.82	-270.17
$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$	-307.90	-273.08
SO_{4}^{-2}	-216.90	-177.34
HS^{-}(aq)	-4.22	3.01
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-4.815	-7.892
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$	-9.4	-6.54

Guntelberg Approximation:
$\log f=-0.5 z^{2} \frac{\sqrt{I}}{1+\sqrt{I}}$

