FIRST EXAM

Closed book, one page of notes allowed.

Answer any 4 of the following 5 questions. Please state any additional assumptions you made, and show all work.

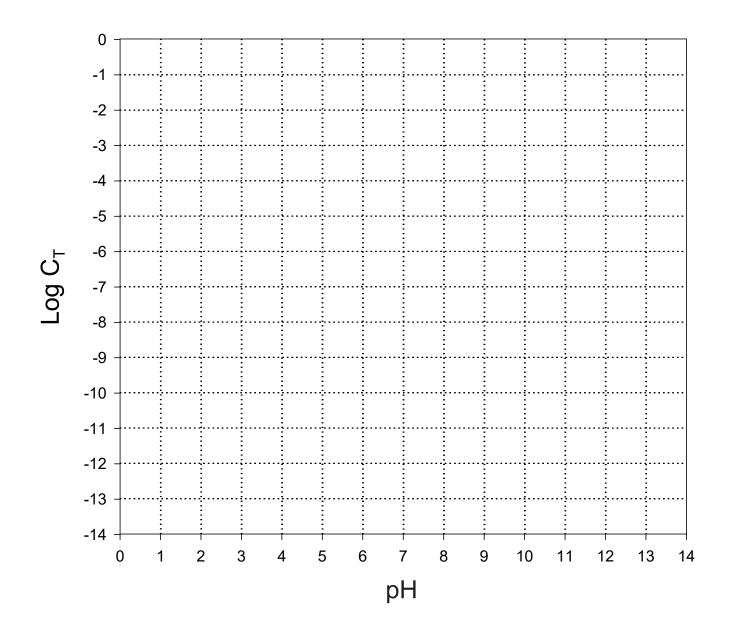
- 1. (25%) Use the graphical solution to determine the pH and complete solution composition for 1 liter of pure water to which you've added 10⁻³ moles of Sodium Citrate Dibasic (Na₂HCit). Graph paper is attached to this exam for this purpose.
- (25%) Determine the pH and solution composition of the above solution after you have added 10⁻² moles of the potassium salt of Propionic Acid (i.e., 10⁻²M KProp plus 10⁻³M Na₂HCit) in 1 liter of water. Please use a graphical solution for this one too.
- 3. (25%) Determine the complete solution composition of:
 - a. a solution of 10^{-2} moles of Hydrogen Sulfide (H₂S) in 1 Liter of water
 - b. the same solution in "a" to which you have also added 0.5x10⁻² moles of Sodium Hydroxide (NaOH).

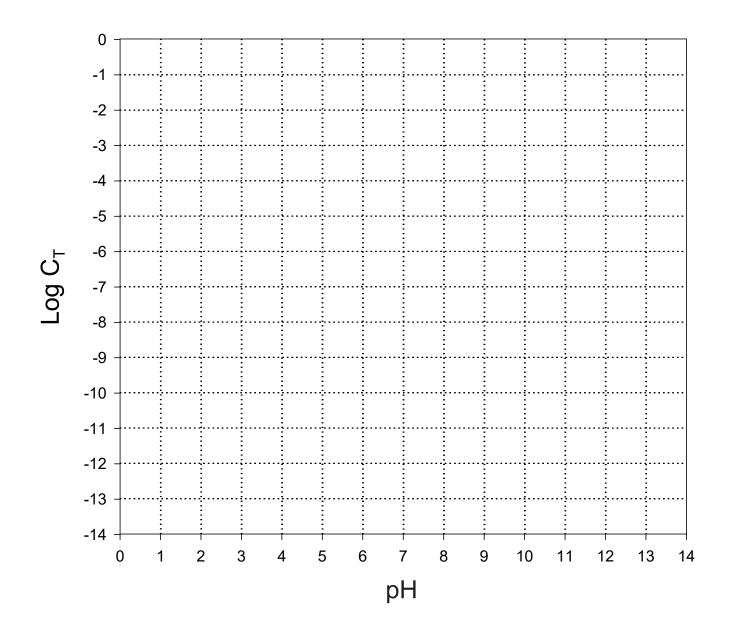
But this time use an algebraic solution. Please ignore ionic strength effects (i.e., assume infinite dilution). Remember to make simplifying assumptions

4. (25%) Repeat problem #3a, but this time consider ionic strength effects, using the Guntelberg Approximation.

- 5. (25%) True/False. Mark each one of the following statements with either a "T" or an "F", whichever is most accurate
 - a. Mass defects are directly proportional to nuclear binding energy
 - b. The value of α_0 plus α_1 must always equal 1 for any triprotic acid system
 - c. _____ The standard assumption used for developing the Henderson-Hasselbach equation is that all negative ions are negligible
 - d. The pH of the endpoint of the alkalinity titration is about 4.5
 - e. Sulfuric acid completely donates its protons to water, regardless of the pH
 - f. Non-carbonate hardness only exists in water without carbonates
 - g. Bisulfide is an amphoteric substance
 - h. Increases in ionic strength have the greatest effect on species with zero h.
 - i. The principle of electroneutrality is always observed in aqueous solutions
 - j. The third most common gas in the atmosphere is carbon dioxide.

NAME	FORMULA	pK _a
Perchloric acid	$HClO_4 = H^+ + ClO_4^-$	-7 STRONG
Hydrochloric acid	$HCl = H^+ + Cl^-$	-3
Sulfuric acid	$H_2SO_4 = H^+ + HSO_4^-$	-3 (&2) ACIDS
Nitric acid	$HNO_3 = H^+ + NO_3^-$	-0
Hydronium ion	$H_3O^+ = H^+ + H_2O$	0
Trichloroacetic acid	$CCl_3COOH = H^+ + CCl_3COO^-$	0.70
Iodic acid	$HIO_3 = H^+ + IO_3^-$	0.8
Bisulfate ion	$HSO_4^- = H^+ + SO_4^{-2}$	2
Phosphoric acid	$H_3PO_4 = H^+ + H_2PO_4^-$	2.15 (&7.2,12.3)
o-Phthalic acid	$C_{6}H_{4}(COOH)_{2} = H^{+} + C_{6}H_{4}(COOH)COO^{-}$	2.89 (&5.51)
Citric acid (H ₃ Cit)	$C_{3}H_{4}OH(COOH)_{3}=H^{+}+C_{3}H_{4}OH(COOH)_{2}COO^{-}$	3.14 (&4.77, 6.4)
Hydrofluoric acid	$HF = H^+ + F^-$	3.2
Aspartic acid	$C_2H_6N(COOH)_2 = H^+ + C_2H_6N(COOH)COO^-$	3.86 (&9.82)
m-Hydroxybenzoic acid	$C_6H_4(OH)COOH = H^+ + C_6H_4(OH)COO^-$	4.06 (&9.92)
p-Hydroxybenzoic acid	$C_6H_4(OH)COOH = H^+ + C_6H_4(OH)COO^-$	4.48 (&9.32)
Nitrous acid	$HNO_2 = H^+ + NO_2^-$	4.5
Acetic acid	$CH_3COOH = H^+ + CH_3COO^-$	4.75
Citrate Monobasic (H ₂ Cit ⁻¹)	$C_3H_4OH(COOH)_2COO^-=H^++C_3H_4OHCOOH(COO)_2^{-2}$	4.77
Propionic acid	$C_2H_5COOH = H^+ + C_2H_5COO^-$	4.87
o-Phthalate	$C_6H_4(COOH)COO^- = H^+ + C_6H_4(COO_2)$	5.51
Citrate Dibasic (HCit ⁻²)	$C_{3}H_{4}OHCOOH(COO)_{2}^{-2}=H^{+}+C_{3}H_{4}OH(COO)_{3}^{-3}$	6.4
Carbonic acid	$H_2CO_3 = H^+ + HCO_3^-$	6.35 (&10.33)
Hydrogen sulfide	$H_2S = H^+ + HS^-$	7.02 (&13.9)
Dihydrogen phosphate	$H_2PO_4^- = H^+ + HPO_4^{-2}$	7.2
Hypochlorous acid	$HOCl = H^+ + OCl^-$	7.5
Boric acid	$B(OH)_3 + H_2O = H^+ + B(OH)_4^-$	9.2 (&12.7,13.8)
Ammonium ion	$\mathrm{NH_4}^+ = \mathrm{H^+} + \mathrm{NH_3}$	9.24
Hydrocyanic acid	$HCN = H^+ + CN^-$	9.3
p-Hydroxybenzoic acid	$C_{6}H_{4}(OH)COO^{-} = H^{+} + C_{6}H_{4}(O)COO^{-2}$	9.32
Phenol	$C_6H_5OH = H^+ + C_6H_5O^-$	9.9
m-Hydroxybenzoic acid	$C_{6}H_{4}(OH)COO^{-} = H^{+} + C_{6}H_{4}(O)COO^{-2}$	9.92
Bicarbonate ion	$HCO_3^- = H^+ + CO_3^{-2}$	10.33
Monohydrogen phosphate	$HPO_4^{-2} = H^+ + PO_4^{-3}$	12.3
Bisulfide ion	$HS^{-} = H^{+} + S^{-2}$	13.9
Water	$H_2O = H^+ + OH^-$	14.00


Selected Acidity Constants (Aqueous Solution, 25° C, I = 0)


Methane

 $CH_4 = H^+ + CH_3^-$

	A	
Species	${}^{\scriptscriptstyle \Delta}\overline{H}{}^{o}_{f}$	${}^{\scriptscriptstyle \Delta}\overline{G}^o_f$
1		
	kcal/mole	kcal/mole
Ca ⁺² (aq)	-129.77	-132.18
CaCO ₃ (s), calcite	-288.45	-269.78
CaO (s)	-151.9	-144.4
C(s), graphite	0	0
$CO_2(g)$	-94.05	-94.26
CO ₂ (aq)	-98.69	-92.31
$CH_4(g)$	-17.889	-12.140
H_2CO_3 (aq)	-167.0	-149.00
$HCO_3^-(aq)$	-165.18	-140.31
CO_{3}^{-2} (aq)	-161.63	-126.22
HOCl (aq)	-28.90	-19.10
OCl- (aq)	-25.60	-8.80
CH ₃ COOH	-116.79	-95.5
CH ₃ COO ⁻ , acetate	-116.84	-89.0
$\mathrm{H}^{+}\left(\mathrm{aq}\right)$	0	0
$H_{2}(g)$	0	0
HF (aq)	-77.23	-71.63
F ⁻ (aq)	-80.15	-67.28
Fe^{+2} (aq)	-21.0	-20.30
Fe^{+3} (aq)	-11.4	-2.52
Fe(OH) ₃ (s)	-197.0	-166.0
NO_3^- (aq)	-49.372	-26.43
NH ₃ (g)	-11.04	-3.976
NH ₃ (aq)	-19.32	-6.37
NH_4^+ (aq)	-31.74	-19.00
HNO ₃ (aq)	-49.372	-26.41
$O_2(aq)$	-3.9	3.93
$O_2(g)$	0	0
OH ⁻ (aq)	-54.957	-37.595
$H_2O(g)$	-57.7979	-54.6357
$H_2O(l)$	-68.3174	-56.690
PO_{4}^{-3} (aq)	-305.30	-243.50
HPO_4^{-2} (aq)	-308.81	-260.34
$H_2PO_4^-$ (aq)	-309.82	-270.17
$H_3PO_4(aq)$	-307.90	-273.08
SO4 ⁻²	-216.90	-177.34
HS ⁻ (aq)	-4.22	3.01
$H_2S(g)$	-4.815	-7.892
H ₂ S(aq)	-9.4	-6.54

Guntelberg Approximation: $\boxed{\log f = -0.5z^2 \frac{\sqrt{I}}{1 + \sqrt{I}}}$

