FIRST EXAM

Closed book, one page of notes allowed.

Answer any 4 of the following 5 questions. Please state any additional assumptions you made, and show all work. You are welcome to use a graphical method of solution if it is appropriate.

- 1. (25%) Use the graphical solution to determine the pH and complete solution composition for 1 liter of pure water to which you've added $10^{-3.5}$ moles of NaH₂PO₄. Graph paper is attached to this exam for this purpose.
- 2. (25%) Determine the pH and solution composition of a mixture of $10^{-3.5}$ moles of NaH₂PO₄ plus 10^{-3} moles of Sodium Acetate in 1 liter of water. Please use a graphical solution for this one too.
- 3. (25%) Determine the complete solution composition of a solution of $10^{-4.5}$ moles of Iodic Acid (HIO₃) in 1 Liter of water, but for this one use an algebraic solution. Do this again, but this time assume you're adding $10^{-4.5}$ moles of the conjugate base [i.e., Sodium Iodate (NaIO₃)] in 1 Liter of water. Remember to make simplifying assumptions.
- 4. (25%) Repeat problem #1, but this time add 0.1 M of NaCl as well as the $10^{-3.5}$ moles of NaH₂PO₄ to your liter of water

5. (25%) True/False. Mark each one of the following statements with either a "T" or an "F", whichever is most accurate

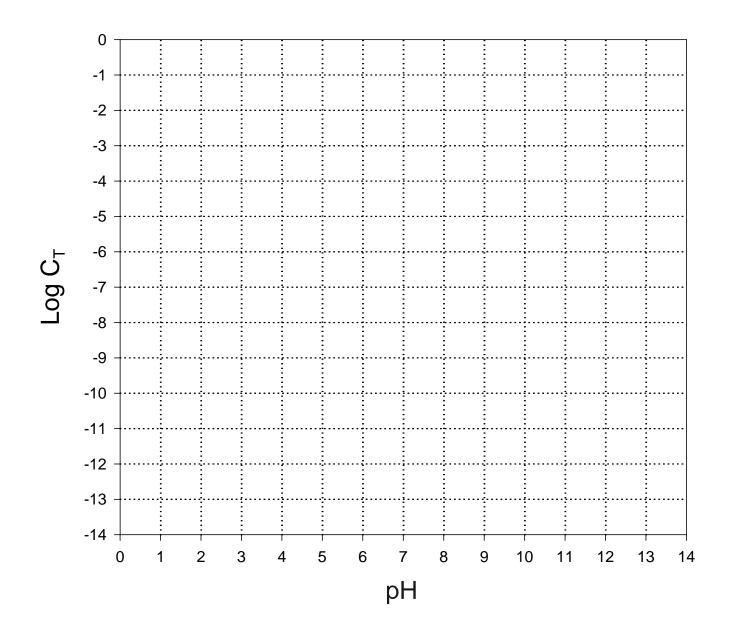
The pH of pure water to which you add 10^{-2} M NaHPO₄ and 10^{-2} Na₂HPO₄ is about equal to the second pKa for the phosphate system (i.e., pH ~ 7.2)

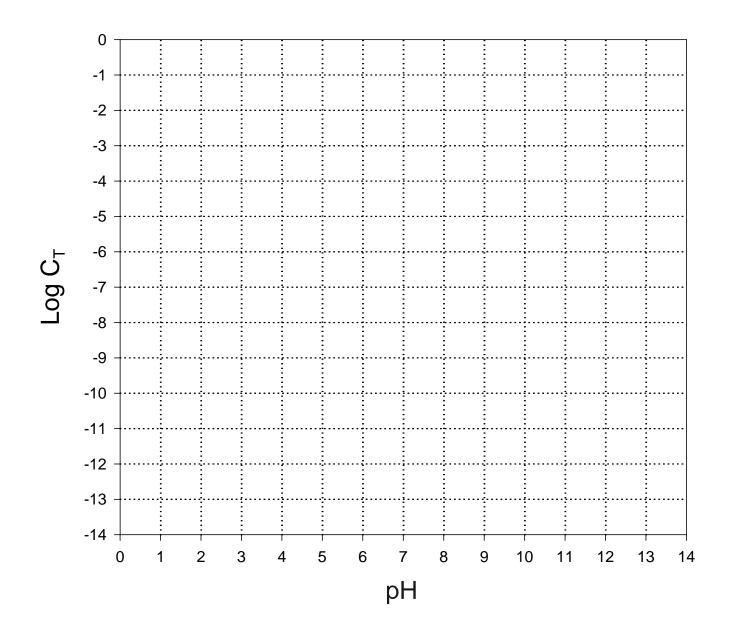
- b. Conditional equilibrium constants are independent of ionic strength
- c. The sum of any pKa and the pKb of its conjugate base is always 1.
- d. pH = pKa at the mid-point of a titration

a.

- e. Nitric acid always completely donates its proton to the solvent it is dissolve in, regardless of the nature of that solvent
- f. The principle of electroneutrality is always observed in aqueous solutions
- g. Non-carbonate hardness is equal to the magnesium concentration
- h. Increases in ionic strength have no effect on species with zero charge.
- i. Nitrate is a very strong base in water

The value of α_0 plus α_1 must always equal 1 for any diprotic acid j. _____ system.


NAME FORMULA pK_a Perchloric acid $HClO_4 = H^+ + ClO_4^-$ -7 STRONG Hydrochloric acid $HCl = H^+ + Cl^-$ -3 Sulfuric acid $H_2SO_4 = H^+ + HSO_4^-$ -3 (&2) ACIDS Nitric acid $HNO_3 = H^+ + NO_3^-$ -0 -0 Hydronium ion $H_3O^+ = H^+ + H_2O$ 0 0 Trichloroacetic acid $CCl_3COOH = H^+ + CCl_3COO^-$ 0.70 Iodic acid $HIO_3 = H^+ + IO_3^-$ 0.8 Bisulfate ion $HSO_4^- = H^+ + SO_4^{-2}$ 2 Phosphoric acid $H_3PO_4 = H^+ + H_2PO_4^-$ 2.15 (&7.2,12.3) o-Phthalic acid $C_6H_4(COOH)_2 = H^+ + C_6H_4(COOH)COO^-$ 2.89 (&5.51) Citric acid $C_3H_5O(COOH)_3 = H^+ + C_3H_5O(COOH)_2COO^-$ 3.14 (&4.77,6.4)	
HereHereHereHydrochloric acidHCl = H ⁺ + Cl ⁻ -3Sulfuric acidH2SO4= H ⁺ + HSO4 ⁻ -3 (&2) ACIDSNitric acidHNO3 = H ⁺ + NO3 ⁻ -0Hydronium ionH3O ⁺ = H ⁺ + H2O0Trichloroacetic acidCCl3COOH = H ⁺ + CCl3COO ⁻ 0.70Iodic acidHIO3 = H ⁺ + H03 ⁻ 0.8Bisulfate ionHSO4 ⁻ = H ⁺ + SO4 ⁻² 2Phosphoric acidH3PO4 = H ⁺ + H2PO4 ⁻ 2.15 (&7.2,12.3)o-Phthalic acidC6H4(COOH)2 = H ⁺ + C6H4(COOH)COO ⁻ 2.89 (&5.51)Citric acidC3H5O(COOH)3 = H ⁺ + C3H5O(COOH)2COO ⁻ 3.14 (&4.77,6.4)	
Sulfuric acid $H_2SO_4 = H^+ + HSO_4^-$ -3 (&2) ACIDSNitric acid $HNO_3 = H^+ + NO_3^-$ -0Hydronium ion $H_3O^+ = H^+ + H_2O$ 0Trichloroacetic acid $CC1_3COOH = H^+ + CC1_3COO^-$ 0.70Iodic acid $HIO_3 = H^+ + IO_3^-$ 0.8Bisulfate ion $HSO_4^- = H^+ + SO_4^{-2}$ 2Phosphoric acid $H_3PO_4 = H^+ + H_2PO_4^-$ 2.15 (&7.2,12.3)o-Phthalic acid $C_6H_4(COOH)_2 = H^+ + C_6H_4(COOH)COO^-$ 2.89 (&5.51)Citric acid $C_3H_5O(COOH)_3 = H^+ + C_3H_5O(COOH)_2COO^-$ 3.14 (&4.77,6.4)	
Nitric acid HNO3 = H ⁺ + NO3 ⁻ -0 Hydronium ion $H_3O^+ = H^+ + H_2O$ 0 Trichloroacetic acid CCl3COOH = H ⁺ + CCl3COO ⁻ 0.70 Iodic acid HIO3 = H ⁺ + HO3 ⁻ 0.8 Bisulfate ion HSO4 ⁻ = H ⁺ + SO4 ⁻² 2 Phosphoric acid H3PO4 = H ⁺ + H2PO4 ⁻ 2.15 (&7.2,12.3) o-Phthalic acid C ₆ H ₄ (COOH) ₂ = H ⁺ + C ₆ H ₄ (COOH)COO ⁻ 2.89 (&5.51) Citric acid C ₃ H ₅ O(COOH) ₃ = H ⁺ + C ₃ H ₅ O(COOH) ₂ COO ⁻ 3.14 (&4.77,6.4)	
Hydronium ion $H_3O^+ = H^+ + H_2O$ 0Trichloroacetic acidCCl_3COOH = H^+ + CCl_3COO^-0.70Iodic acidHIO_3 = H^+ + IO_3^-0.8Bisulfate ionHSO4^- = H^+ + SO4^{-2}2Phosphoric acidH_3PO4 = H^+ + H_2PO4^-2.15 (&7.2,12.3)o-Phthalic acidC_6H4(COOH)_2 = H^+ + C_6H4(COOH)COO^-2.89 (&5.51)Citric acidC_3H_5O(COOH)_3 = H^+ + C_3H_5O(COOH)_2COO^-3.14 (&4.77,6.4)	
Trichloroacetic acid CCl ₃ COOH = H ⁺ + CCl ₃ COO ⁻ 0.70 Iodic acid HIO ₃ = H ⁺ + IO ₃ ⁻ 0.8 Bisulfate ion HSO ₄ ⁻ = H ⁺ + SO ₄ ⁻² 2 Phosphoric acid H ₃ PO ₄ = H ⁺ + H ₂ PO ₄ ⁻ 2.15 (&7.2,12.3) o-Phthalic acid C ₆ H ₄ (COOH) ₂ = H ⁺ + C ₆ H ₄ (COOH)COO ⁻ 2.89 (&5.51) Citric acid C ₃ H ₅ O(COOH) ₃ = H ⁺ + C ₃ H ₅ O(COOH) ₂ COO ⁻ 3.14 (&4.77,6.4)	
Iodic acid HIO3 = H ⁺ + IO3 ⁻ 0.8 Bisulfate ion HSO4 ⁻ = H ⁺ + SO4 ⁻² 2 Phosphoric acid H3PO4 = H ⁺ + H2PO4 ⁻ 2.15 (&7.2,12.3) o-Phthalic acid C6H4(COOH)2 = H ⁺ + C6H4(COOH)COO ⁻ 2.89 (&5.51) Citric acid C3H5O(COOH)3= H ⁺ + C3H5O(COOH)2COO ⁻ 3.14 (&4.77,6.4)	
Bisulfate ion $HSO_4^- = H^+ + SO_4^{-2}$ 2 Phosphoric acid $H_3PO_4 = H^+ + H_2PO_4^-$ 2.15 (&7.2,12.3) o-Phthalic acid $C_6H_4(COOH)_2 = H^+ + C_6H_4(COOH)COO^-$ 2.89 (&5.51) Citric acid $C_3H_5O(COOH)_3 = H^+ + C_3H_5O(COOH)_2COO^-$ 3.14 (&4.77,6.4)	
Phosphoric acid $H_3PO_4 = H^+ + H_2PO_4^-$ 2.15 (&7.2,12.3) o-Phthalic acid $C_6H_4(COOH)_2 = H^+ + C_6H_4(COOH)COO^-$ 2.89 (&5.51) Citric acid $C_3H_5O(COOH)_3 = H^+ + C_3H_5O(COOH)_2COO^-$ 3.14 (&4.77,6.4)	
o-Phthalic acid $C_6H_4(COOH)_2 = H^+ + C_6H_4(COOH)COO^-$ 2.89 (&5.51)Citric acid $C_3H_5O(COOH)_3 = H^+ + C_3H_5O(COOH)_2COO^ 3.14$ (&4.77,6.4)	
Citric acid $C_{3}H_{5}O(COOH)_{3} = H^{+} + C_{3}H_{5}O(COOH)_{2}COO^{-}$ 3.14 (&4.77,6.4)	
$Hydrofluoric acid HF = H^+ + F^- 3.2$	
Aspartic acid $C_{2}H_{6}N(COOH)_{2} = H^{+} + C_{2}H_{6}N(COOH)COO^{-}$ 3.86 (&9.82)	
m-Hydroxybenzoic acid $C_{6}H_{4}(OH)COOH = H^{+} + C_{6}H_{4}(OH)COO^{-}$ 4.06 (&9.92)	
p-Hydroxybenzoic acid $C_6H_4(OH)COOH = H^+ + C_6H_4(OH)COO^-$ 4.48 (&9.32)	
Nitrous acid $HNO_2 = H^+ + NO_2^-$ 4.5	
Acetic acid $CH_3COOH = H^+ + CH_3COO^-$ 4.75	
Propionic acid $C_2H_5COOH = H^+ + C_2H_5COO^-$ 4.87	
Carbonic acid $H_2CO_3 = H^+ + HCO_3^-$ 6.35 (&10.33)	
Hydrogen sulfide $H_2S = H^+ + HS^-$ 7.02 (&13.9)	
Dihydrogen phosphate $H_2PO_4^- = H^+ + HPO_4^{-2}$ 7.2	
Hypochlorous acid $HOCl = H^+ + OCl^-$ 7.5	
Boric acid $B(OH)_3 + H_2O = H^+ + B(OH)_4^-$ 9.2 (&12.7,13.8)	
Ammonium ion $NH_4^+ = H^+ + NH_3$ 9.24	
Hydrocyanic acid $HCN = H^+ + CN^-$ 9.3	
p-Hydroxybenzoic acid $C_{6}H_{4}(OH)COO^{-} = H^{+} + C_{6}H_{4}(O)COO^{-2}$ 9.32	
Phenol $C_{6}H_{5}OH = H^{+} + C_{6}H_{5}O^{-}$ 9.9	
m-Hydroxybenzoic acid $C_{6}H_{4}(OH)COO^{-} = H^{+} + C_{6}H_{4}(O)COO^{-2}$ 9.92	
Bicarbonate ion $HCO_3^- = H^+ + CO_3^{-2}$ 10.33	
Monohydrogen $HPO_4^{-2} = H^+ + PO_4^{-3}$ 12.3	
Bisulfide ion $HS^- = H^+ + S^{-2}$ 13.9	
Water $H_2O = H^+ + OH^-$ 14.00	
Ammonia $NH_3 = H^+ + NH_2^-$ 23	
Methane $CH_4 = H^+ + CH_3^-$ 34	


Selected Acidity Constants (Aqueous Solution, 25° C, I = 0)

Species	${}^{\Delta}\overline{H}{}^{o}_{f}$	${}^{\scriptscriptstyle \Delta}\overline{G}{}^o_f$
	kcal/mole	kcal/mole
Ca ⁺² (aq)	-129.77	-132.18
$CaCO_3(s)$, calcite	-288.45	-269.78
CaO (s)	-151.9	-144.4
C(s), graphite	0	0
$CO_2(g)$	-94.05	-94.26
$CO_2(aq)$	-98.69	-92.31
$CH_4(g)$	-17.889	-12.140
H_2CO_3 (aq)	-167.0	-149.00
$HCO_3^{-}(aq)$	-165.18	-140.31
CO_{3}^{-2} (aq)	-161.63	-126.22
CH ₃ COOH	-116.79	-95.5
CH ₃ COO ⁻ , acetate	-116.84	-89.0
$\mathrm{H}^{+}(\mathrm{aq})$	0	0
$H_{2}(g)$	0	0
HF (aq)	-77.23	-71.63
$F^{-}(aq)$	-80.15	-67.28
Fe^{+2} (aq)	-21.0	-20.30
Fe^{+3} (aq)	-11.4	-2.52
$Fe(OH)_3(s)$	-197.0	-166.0
$NO_3^-(aq)$	-49.372	-26.43
$NH_3(g)$	-11.04	-3.976
NH ₃ (aq)	-19.32	-6.37
NH_4^+ (aq)	-31.74	-19.00
HNO ₃ (aq)	-49.372	-26.41
O_2 (aq)	-3.9	3.93
$O_2(g)$	0	0
OH ⁻ (aq)	-54.957	-37.595
$H_2O(g)$	-57.7979	-54.6357
H ₂ O (l)	-68.3174	-56.690
PO_4^{-3} (aq)	-305.30	-243.50
HPO_4^{-2} (aq)	-308.81	-260.34
$H_2PO_4^-(aq)$	-309.82	-270.17
$H_3PO_4(aq)$	-307.90	-273.08
SO_4^{-2}	-216.90	-177.34
$HS^{-}(aq)$	-4.22	3.01
$H_2S(g)$	-4.815	-7.892
$H_2S(aq)$	-9.4	-6.54

Guntelberg Approximation:

$$\log f = -0.5z^2 \frac{\sqrt{I}}{1+\sqrt{I}}$$

