CEE 680

FINAL EXAM

Closed book, three pages of notes allowed.

Answer Question #1, #2 and either #3 or #4. Please state any additional assumptions you made, and show all work. If you don't have time to complete a section, please describe how you would solve the problem (without using a computer program such as MINEQL).

<u>Miscellaneous Information</u>: R = 1.987 cal/mole°K = 8.314 J/mole°K Absolute zero = -273.15°C 1 joule = 0.239 calories

1. Buffers (25%)

You have prepared a 10 mM phosphate buffer designed to hold pH at 8.1 (25°C, assume I \sim 0). The two chemicals at your disposal are Na₂HPO₄ and KH₂PO₄.

- A. How much of each compound (in mM concentration) would you add to create your buffer?
- B. If you were to elevate the solution pH to 12.0, how much NaOH would you need to add (again in mM)?

2. Redox (25%)

Sulfide and sulfate are two forms of sulfur that commonly exist in the aquatic environment. They often are found in groundwaters with both reduced and oxidized iron.

- A. Write a balanced equation for the oxidation of hydrogen sulfide (HS⁻) to sulfate by reaction with amorphous ferric hydroxide, liberating free ferrous iron.
- B. Determine the net cell potential (E^o_{net}) and the equilibrium constant for this reaction and comment on what thermodynamics tells you about whether this is a favorable reaction in a typical groundwater and surface water systems.
- C. At what pH does the equilibrium rest half-way between the two sulfur species? Assume a free ferrous iron concentration of 0.56 mg/L. Which species (sulfate or bisulfide) will predominate at lower pHs?

3. Solubility (50%) Answer this or #4, your choice

Ferrous Sulfide (Troilite, a form of Pyrrhotite) is a rather insoluble mineral with a K_{so} of about $10^{-18.1}$. One would expect this to form in reduced groundwaters and sediments where ferrous iron and sulfide are major forms of Fe and S. Fe(OH)_{2(s)} would, of course form under the right conditions as well.

#	Reaction	рК
1^1	$FeS_{(s)} = Fe^{+2} + S^{-2}$	18.1
2	$Fe(OH)_{2(s)} + 2H^{+} = Fe^{+2} + 2H_{2}O$	-12.9
3	$FeOH^{+} + H^{+} = Fe^{+2} + H_2O$	-9.5
4	$Fe(OH)_2^{o} + 2H^+ = Fe^{+2} + 2H_2O$	-20.6
5	$Fe(OH)_{3}^{-} + 3H^{+} = Fe^{+2} + 3H_{2}O$	-31.0

- A. Prepare a combined Ferrous Hydroxide and Ferrous Sulfide solubility diagram assuming you have a total sulfide concentration of 10⁻⁶M. The x-axis should be pH and the y-axis should be log concentration. Show lines for the four soluble iron species based on each precipitate. Identify the key precipitation zones with Fe_τ lines.
- B. At what pH can both precipitates co-exist?
- C. If the sulfide concentration was to increase, would the pH where the precipitates co-exist increase or decrease?
- D. Describe in qualitative terms how the presence of 10⁻³M total carbonate would affect the hydroxide and sulfide precipitation zones.
- E. Describe in qualitative terms how the presence of 10⁻⁶M mercury would affect the hydroxide and sulfide precipitation zones

¹ Because of uncertainty over K_2 for the sulfide system, this equilibrium are often expressed in terms of HS⁻ rather than S⁻². However, to be consistant, I have converted it to the more conventional Kso form in a way that is internally consistent with our value of 10^{-13.9} for the sulfide K₂. These pK values were taken from Morel & Hering, 1993.

4. Predominance (50%) Answer this or #3, your choice

Lead carbonate (PbCO_{3(s)}) and red Lead Oxide (PbO_(s)) are two important solid phases that may control lead solubility in water². In the attached pages is a detailed solution leading to a zinc hydroxide solubility diagram. Please use this to help solve the following problems.

- A. Prepare a solubility diagram (log C vs pH) for a water that is potentially in equilibrium with lead hydroxide and lead carbonate. Assume the water has 10^{-3} M total carbonates (i.e., 1 mM C_T). Show all soluble species along with the Pb_T line and indicate where precipitation will occur and the type of precipitate. To help you, there is a full solubility diagram for lead hydroxide only below. Feel free to work from this to prepare the combined carbonate-hydroxide diagram
- B. Below is a partially completed predominance diagram for the lead oxide lead carbonate system. This was prepared for a total soluble lead concentration of 10^{-4} M (i.e., 0.1 mM Pb_T). Please complete this diagram showing the line(s) separating the two precipitates (C lines) and also determine and show the last remaining B line that separates the PbCO3 precipitation zone from the Pb(OH)₃⁻ zone (no precipitate). Show your work.

Stumm & Morgan Present the following data in Table A6.1

	OH		CO ₃ ⁻²	
Pb ²⁺	PbL	6.3		
	PbL ₂	10.9	PbL • s	13.1
	PbL₃	13.9		
	PbL₂ ● s	15.3		

They note that the numerical values are Log formation contstants.

Using these data you can rearrange the equilibrium quotients to get the following

In equilibrium with PbO(s): $Log[Pb^{+2}] = +12.7 - 2pH$ $Log[PbOH^{+}] = +5.0 - pH$ $Log[Pb(OH)_{2}] = -4.4$ $Log [Pb(OH)_{3}] = -15.4 + pH$

² Some mixed carbonate-hydroxide species may, in fact, be the most important, but they will not be considered here for the purpose of simplicity.

In equilibrium with PbCO₃(s): $Log[Pb^{+2}] = -13.1 - log[CO_3^{-2}]$ $Log[PbOH^{+}] = -20.8 + pH - log[CO_3^{-2}]$ $Log[Pb(OH)_2] = -30.2 + 2pH - log[CO_3^{-2}]$ $Log [Pb(OH)_3] = -41.2 + 3pH - log[CO_3^{-2}]$

Some important equilibrium constants:

Equilibria	Log K
$Mg(OH)_{2 (s)} = Mg^{+2} + 2OH^{-1}$	-11.6
$Mg^{+2} + H_2O = MgOH^+ + H^+$	-11.44
$MgCO_{3(s)} = Mg^{+2} + CO_{3}^{-2}$	-7.5
$CaCO_{3(s)} = Ca^{+2} + CO_3^{-2}$	-8.34
$Ca(OH_2)_{(s)} = Ca^{+2} + 2OH^{-1}$	-5.19
$CaSO_4^{-2}H_2O_{(s)} = Ca^{+2} + SO_4^{-2} + 2H_2O$	-4.62
$CaOH^+ = Ca^{+2} + OH^-$	-1.15
$FeCO_{3(s)} = Fe^{+2} + CO_{3}^{-2}$	-10.7
$AIOH^{+2} = AI^{+3} + OH^{-1}$	-9.01
$CdOH^+ = Cd^{+2} + OH^-$	-3.92
$CoOH^+ = Co^{+2} + OH^-$	-4.80
$CuOH^+ = Cu^{+2} + OH^-$	-6.00
$HgOH^+ = Hg^{+2} + OH^-$	-10.60
$NiOH^+ = Ni^{+2} + OH^-$	-4.14
$PbOH^{+} = Pb^{+2} + OH^{-}$	-6.29
$ZnOH^+ = Zn^{+2} + OH^-$	-5.04
$HgS_{(s)} = Hg^{+2} + S^{-2}$	-42.7

Some important half-cell reactions

<u>Equ#</u>	Half Cell Reaction	ΔE^{o} (Volts)
1	O₂(aq) + 4H ⁺ + 4e ⁻ = 2H₂O	+1.23
2	$Mn^{+3} + e^{-} = Mn^{+2}$	+1.51
3	$Mn^{+4} + e^{-} = Mn^{+3}$	+1.65
4	$MnO_{a}^{-} + 8H^{+} + 5e^{-} = Mn^{+2} + 4H_{2}O$	+1.49
5	$Fe^{+3} + e^{-} = Fe^{+2}$	+0.77
6	$Cu^{+2} + e^{-} = Cu^{+}$	+0.16
7	1/2HOBr + 1/2H ⁺ + e ⁻ = 1/2Br ⁻ + 1/2H ₂ O	+1.33
8	$O_{3(g)} + 2H^{+} + 2e^{-} = O_{2(g)} + H_2O$	+2.07
9	$AI^{+3} + 3e^{-} = AI_{(s)}$	-1.68
10	1/2HOCI + 1/2H ⁺ + e ⁻ = 1/2CI ⁻ + 1/2H ₂ O	+1.48
11	$\frac{1}{2}$ OCl ⁻ + H ⁺ + e ⁻ = $\frac{1}{2}$ Cl ⁻ + $\frac{1}{2}$ H ₂ O	+1.64
12	$BrO_{3}^{-}+5H^{+}+4e^{-}=HOBr+2H_{2}O$	+1.45
13	$\frac{1}{2}NH_{2}CI + H^{+} + e^{-} = \frac{1}{2}CI^{-} + \frac{1}{2}NH_{4}^{+}$	+1.40
14	$Fe(OH)_{3(am)} + 3H^{+} + e^{-} = Fe^{+2} + 3H_2O$	+0.95
15	$SO_4^{-2} + 9H^+ + 8e^- = HS^- + 4H_2O$	+0.25
16	$S_{(s)} + 2H^+ + 2e^- = H_2S_{(g)}$	+0.17
17	$Zn^{+2} + 2e^{-} = Zn(s)$	-0.76
18	$Ni^{+2} + 2e^{-} = Ni(s)$	-0.24
19	$Pb^{+2} + 2e^{-} = Pb(s)$	-0.126
20	$ClO_2 + e = ClO_2$ -	+0.95
21	$PbO_2(s) + 4H^+ + 2e^- = Pb^{+2} + 2H_2O$	+1.451

Element	Symbol	Atomic #	Atomic Wt.	Valence	Electronegativity
Aluminum	Al	13	26.98	3	1.47
Bromine	Br	35	79.904	1,3,5,7	2.74
Calcium	Ca	20	40.08	2	1.04
Carbon	С	6	12.01	2,4	2.50
Chlorine	Cl	17	35.453	1,3,5,7	2.83
Copper	Cu	29	63.54	1,2	1.75
Hydrogen	Н	1	1.01	1	2.20
Iron	Fe	26	55.845	0,2,3	1.83
Magnesium	Mg	12	24.31	2	1.23
Manganese	Mn	25	54.94	2,3,4,6,7	1.60
Nitrogen	N	7	14.0047	3,5	3.07
Oxygen	0	8	16.00	2	3.50
Potassium	К	19	39.10	1	0.91
Sodium	Na	11	22.99	1	1.01
Strontium	Sr	38	87.62	2	0.99
Sulfur	S	16	32.06	2,4,6	2.44
Zinc	Zn	30	65.39	2	1.65
Lead	Pb	82	207.19	2,4	

Properties of Selected Elements

Atmospheric Gases

Gas	Atmospheric Abundance	Henry's Law Const ³
Nitrogen (N ₂)	780,840 ppmv (78.084%)	6.1 x 10 ⁻⁴
$Oxygen(O_2)$	209,460 ppmv (20.946%)	1.3 x 10 ⁻³
Argon (Ar)	9,340 ppmv (0.9340%)	1.4×10^{-3}
Carbon dioxide (CO ₂)	387 ppmv (0.0387%)	3.4×10^{-2}
Neon (Ne)	18.18 ppmv (0.001818%)	4.5×10^{-4}
Helium (He)	5.24 ppmv (0.000524%)	3.7 x 10 ⁻⁴
Methane (CH ₄)	1.79 ppmv (0.000179%)	
Krypton (Kr)	1.14 ppmv (0.000114%)	
Hydrogen (H ₂)	0.55 ppmv (0.000055%)	7.8 x 10 ⁻⁴
Nitrous oxide (N ₂ O)	0.3 ppmv (0.00003%)	
Xenon (Xe)	0.09 ppmv (9x10 ⁻⁶ %)	

³ In: moles/L/atm

	Aqueous Solution, 25 C, 1 – 0j	
NAME	FORMULA	рК _а
Perchloric acid	$HCIO_4 = H^+ + CIO_4^-$	-7
Hydrochloric acid	$HCI = H^+ + CI^-$	-3
Sulfuric acid	$H_2SO_4 = H^+ + HSO_4^-$	-3
Nitric acid	$HNO_3 = H^+ + NO_3^-$	0
Bisulfate ion	$HSO_4^- = H^+ + SO_4^{-2}$	2
Phosphoric acid	$H_3PO_4 = H^+ + H_2PO_4^-$	2.15
o-Phthalic acid	$C_6H_4(COOH)_2 = H^+ + C_6H_4(COOH)COO^-$	2.89
p-Hydroxybenzoic acid	$C_6H_4(OH)COOH = H^+ + C_6H_4(OH)COO^-$	4.48
Nitrous acid	$HNO_2 = H^+ + NO_2^-$	4.5
Acetic acid	$CH_3COOH = H^+ + CH_3COO^-$	4.75
Aluminum ion	$AI(H_2O)_6^{+3} = H^+ + AI(OH)(H_2O)_5^{+2}$	4.8
Carbonic acid	$H_2CO_3 = H^+ + HCO_3^-$	6.35
Hydrogen sulfide	$H_2S = H^+ + HS^-$	7.02
Dihydrogen phosphate	$H_2PO_4^- = H^+ + HPO_4^{-2}$	7.2
Hypochlorous acid	$HOCI = H^+ + OCI^-$	7.5
Hypobromous acid	HOBr = H ⁺ + OBr ⁻	8.71
Ammonium ion	$NH_4^+ = H^+ + NH_3$	9.24
Bicarbonate ion	$HCO_3^- = H^+ + CO_3^{-2}$	10.33
Monohydrogen phosphate	$HPO_4^{-2} = H^+ + PO_4^{-3}$	12.3
Sulfide	$HS^{-} = H^{+} + S^{-2}$	13.9

Selected Acidity Constants (Aqueous Solution, 25°C, I = 0)

 α_2 for a diprotic acid:

$$\alpha_2 = \frac{1}{\frac{[H^+]^2}{K_1 K_2} + \frac{[H^+]}{K_2} + 1}$$

