CEE 680

SECOND EXAM

Closed book, two pages of notes allowed.

Answer all questions. Please state any additional assumptions you made, and show all work.

1. Carbonate System.

(50% for 1A & B) Two different drinking water supplies are used to provide a total plant flow of 15 MGD. Water #1 is a badly polluted surface water that has elevated levels of ammonia. Water #2 is a relatively pristine groundwater. The two are characterized as follows:

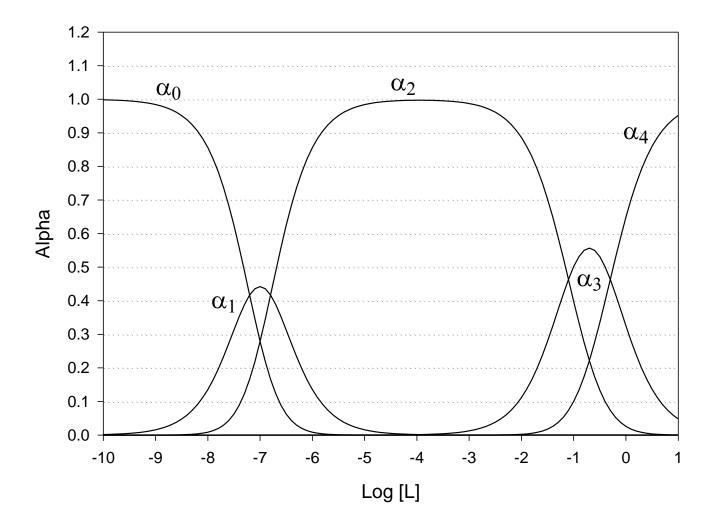
Water	Flow (MGD)	Alkalinity (mg/L as CaCO₃)	Ammonia (mg-N/L)	рН
#1	10	5	2	6.50
#2	5	250	~0	8.20

A. Water #1 is pre-treated with sodium hypochlorite¹ to oxidize the ammonia² to nitrogen gas prior to blending with water #2. What is the pH of water #1 after sodium hypochlorite (NaOCl) addition. Assume the reaction with chlorine is stoichiometric (see equation below) and assume there are no other reactions occurring.

$$2NH_4^+ + 3NaOCl \rightarrow N_{2(a)} + 2H^+ + 3Na^+ + 3Cl^- + 3H_2O$$

B. What will the pH of the blended water be immediately after mixing water #1 (remember that this has just been treated with sodium hypochlorite) and water #2?

2. Complexation


(40% total for both parts) Chloride forms few strong complexes. Mercury is one exception. The following two part problem concerns complexes of this metal-ligand combination.

A. (20%) Attached is an accurate graph of alpha values (vs log[Cl-]) for the Mercuric Chloride system. Using this graph determine the complete mercury speciation in sea water where free chloride is about 0.5M and total mercury is about 10⁻⁹M. Assume the only mercury species are free Hg⁺² and the various mercuric chloride complexes (i.e., HgCl_x).

¹ Note thas sodium hypochlorite solutions usually come with some NaOH, but for purposes of this problem, let's assume that the solution added is pure NaOCI

² Although we call this ammonia, it is really present as ammonium ion (NH_4^+) at all pHs below 9.

B. (20%) Now determine the complete compsition of a 10^{-7} M solution of sodium chloride to which you have added 10^{-7} M of HgCl₂. Ignore all other mercury complexes except for the chloride ones (i.e., HgCl_x).

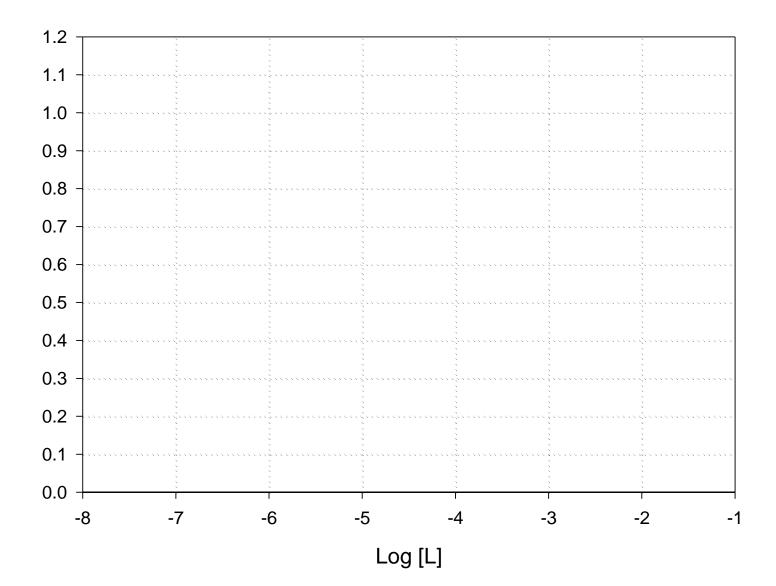
3. Multiple Choice.

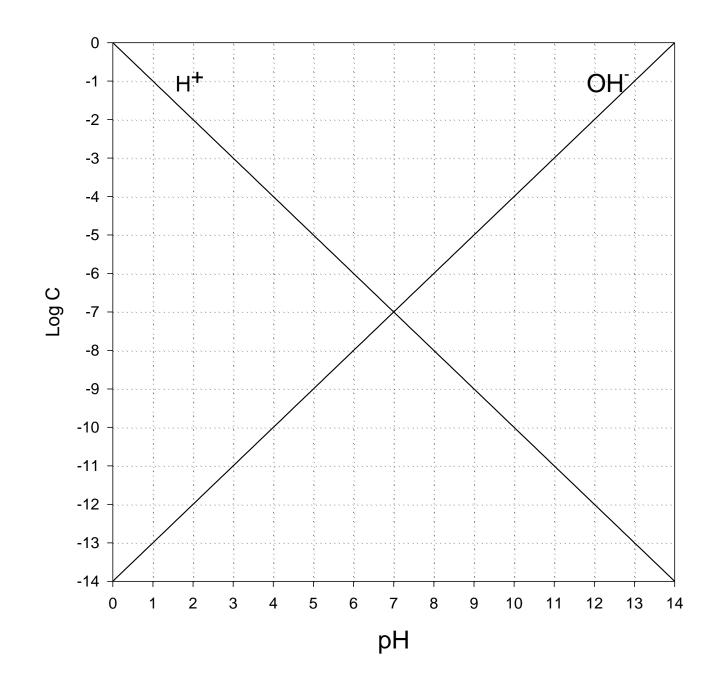
(10%) Answer all 10 of the following questions. Indicate which of the options is the best choice.

- 1. The sum of total acidity and total organic carbon on any given sample is equal to
 - a. the UV absorbance
 - b. twice the total carbonate
 - c. the value one
 - d. half of the hardness
 - e. none of the above

- 2. Alkalinity is said to be conservative when:
 - a. the system being studied is open to the atmosphere
 - b. the system being studied is isolated in the subsurface
 - c. the system being studied is at alkaline pHs
 - d. all of the above
 - e. none of the above
- 3. Phenolphthalein
 - a. is a hexadentate ligand
 - b. is rarely used because noone can spell it
 - c. complexes calcium forming an insoluble salt
 - d. is the drug of choice for malaria
 - e. changes from colorless to red as pH increases
- 4. H₂CO₃*:
 - a. is composed mostly of aqueous CO₂
 - b. is conservative in closed systems
 - c. is am ampholyte
 - d. all of the above
 - e. none of the above
- 5. A ligand atom:
 - a. is always charged
 - b. forms coordinate covalent bonds with metals
 - c. is almost never dissolved
 - d. only forms outer-sphere complexes
 - e. none of the above
- 6. The ligand number:
 - a. is usually 6 or less
 - b. is related to the molecular weight of the central atom
 - c. is a function of the size of the ligand
 - d. all of the above
 - e. none fo the obove

7. The buffer intensity of the acetate/acetic acid system:


- a. is independent of the pH
- b. is independent of the total acetate (C_T)
- c. is zero when the pH is zero.
- d. is at a minimum when the pH is equal to the pH of a pure acetate solution
- e. is at a minimum when the pH = pK
- 8. Detergent "surfactants" are used to:
 - a. help solubilize grease
 - b. complex trace metals
 - c. take hardness cations from the surfactants
 - d. elevate the acidity
 - e. reduce the caloric content


9. EDTA

- a. stands for ethylene dioxo-tetraacetic acid
- b. is most commonly used as a pH buffer
- c. is a higly potent carcinogen
- d. all of the above
- e. none of the above
- 10. The Irving Williams Series
 - a. is a means of estimating alkalinity
 - b. describes the inverse proportionality of acidity to alkalinity
 - c. includes a number of books, such as The Chapman Report, and The Prize
 - d. follows the increase in ligand affinity from Mn(II) to Cu(II)
 - e. provides a comprehensive description of ligand structure

NAME	FORMULA	рК _а
Perchloric acid	$HCIO_4 = H^+ + CIO_4^-$	-7 STRONG
Hydrochloric acid	$HCI = H^+ + CI^-$	-3
Sulfuric acid	$H_2SO_4 = H^+ + HSO_4^-$	-3 (&2) ACIDS
Nitric acid	$HNO_3 = H^+ + NO_3^-$	-0
Hydronium ion	$H_3O^+ = H^+ + H_2O$	0
Trichloroacetic acid	$CCI_3COOH = H^+ + CCI_3COO^-$	0.70
lodic acid	HIO3 = H ⁺ + IO3 ⁻	0.8
Bisulfate ion	$HSO_4^- = H^+ + SO_4^{-2}$	2
Phosphoric acid	$H_3PO_4 = H^+ + H_2PO_4^-$	2.15 (&7.2,12.3)
Citric acid	C ₃ H ₅ O(COOH) ₃ = H ⁺ + C ₃ H ₅ O(COOH) ₂ COO ⁻	3.14 (&4.77,6.4)
Hydrofluoric acid	HF = H ⁺ + F ⁻	3.2
Nitrous acid	$HNO_2 = H^+ + NO_2^-$	4.5
Acetic acid	$CH_{3}COOH = H^{+} + CH_{3}COO^{-}$	4.75
Propionic acid	$C_2H_5COOH = H^+ + C_2H_5COO^-$	4.87
Carbonic acid	$H_2CO_3 = H^+ + HCO_3^-$	6.35 (&10.33)
Hydrogen sulfide	$H_2S = H^+ + HS^-$	7.02 (&13.9)
Dihydrogen phosphate	$H_2PO_4^- = H^+ + HPO_4^{-2}$	7.2
Hypochlorous acid	$HOCI = H^+ + OCI^-$	7.5
Boric acid	B(OH) ₃ + H ₂ O = H ⁺ + B(OH) ₄ ⁻	9.2 (&12.7,13.8)
Ammonium ion	$NH_4^+ = H^+ + NH_3$	9.24
Hydrocyanic acid	$HCN = H^+ + CN^-$	9.3
Phenol	С ₆ H ₅ OH = H ⁺ + С ₆ H ₅ O [−]	9.9
m-Hydroxybenzoic acid	$C_6H_4(OH)COO^- = H^+ + C_6H_4(O)COO^{-2}$	9.92
Bicarbonate ion	$HCO_3^- = H^+ + CO_3^{-2}$	10.33
Monohydrogen phosphate	$HPO_4^{-2} = H^+ + PO_4^{-3}$	12.3
Bisulfide ion	$HS^{-} = H^{+} + S^{-2}$	13.9
Water	$H_2O = H^+ + OH^-$	14.00
Methane	$CH_4 = H^+ + CH_3^-$	34

Selected Acidity Constants (Aqueous Solution, $25^{\circ}C$, I = 0)

