Homework #4

1. Thermodynamics #1

Based on only the following information, determine the standard free energy change ${}^{\Delta}G^{\circ}$ and K value at 25°C and 1 atm for the dissociation of carbonic acid, H₂CO₃ = H⁺ + HCO₃-. Available information:

miormation.		
Reaction		<u>K (@25°C, 1 atm)</u>
$H_2CO_3 = CO_2(aq) + H_2O$		630
		$^{\Delta}\text{G}^{\circ}_{\text{f}}$ (@25°C, 1 atm)
	Species	(kJ/mol) .
	$\overline{CO_{2(aq)}}$	-386.22
	H ₂ O	-237.18
	H^+	0.0
	HCO ₃ -	-586.85

2. Thermodynamics #2

Estimate the value of K_W at 20°C and 1 atm. Assume that at 25°C and 1 atm, the following is true:

EquationEquilibrium Constant (K_w) $H_2O = H^+ + OH^-$ 1.01 x 10⁻¹⁴

Species	<u>H°_f (kJ/mol)</u>
H^+	0
OH-	-230.0
H ₂ O	-285.83

3. Acid/Base Equilibria II: MINEQL method

Solve the problems from question #1 in homework #3 (1A and 1B copied below) using MINEQL¹. Present the MINEQL-based concentrations in a table. Compare your MINEQL results with the approximate solutions you obtained from your graphs in problem homework #3 (note: when solving problems with the carbonate system, you will have to send aqueous CO_2 to the Type VI category just as you did for H⁺. When we work with open carbonate systems, you won't have to do this.)

A). Consider a 0.10 F phosphate (H₃PO₄, H₂PO₄⁻⁷, HPO₄⁻², PO₄⁻³) system. Using MINEQL, calculate the pH and the concentration of all species in the following solutions: *i*) 0.10 F NaH₂PO₄ *ii*) 0.10 F Na₂HPO₄

*iii) 0.10 F Na₃PO*₄

¹ You may also use other chemical equilibria programs besides MINEQL, if you prefer. Examples of others include ChemEQL and MINTEQ.

B) Consider a 0.10 F carbonate system (H₂CO₃, HCO₃⁻, CO₃⁻²) and 0.20 F ammonia system (NH₄⁺, NH₃), and use MINEQL to calculate pH and composition of the following systems:

i) 0.10 F NaHCO3 ii) 0.10 F NaHCO3 + 0.20 F NH4Cl iii) 0.10 F (NH4)2CO3 iv) 0.10 F Na2CO3

> Assigned: 26 Feb 20 Due: 4 Mar 20