## Homework \#3

## 1. Acid/Base Equilibria II: graphical method (4 POINTS)

Solve the following problems (A. and B.) graphically. Later in HW \#4, I will ask you to solve them exactly using MINEQL. Show the graphs and circle your solution point. Then present the approximate concentrations in a table.
A). Construct a $\log \mathrm{C}$ vs pH diagram for a 0.10 F phosphate (H3PO4, H2PO4-, HPO4-2, PO4-3) system. Using it, calculate the pH and the concentration of all species in the following solutions:
i) 0.10 F NaH 2 PO 4
ii) 0.10 F Na 2 HPO 4
iii) 0.10 F Na3PO4

## Approach

* prepare Log C vs pH diagram
* write PBE for each solution
* locate pHs for each solution
* read off concentrations for each species


## Log C vs pH Diagram

* pKs are 2.1, 7.2, and 12.35
* $\log \mathrm{C}_{\mathrm{T}}$ is -1


## Log C vs pH Diagram



## i) 0.10 F NaH2PO4

PBE

$$
\left[\mathrm{HPO}_{4}^{-2}\right]+2\left[\mathrm{PO}_{4}^{-3}\right]+\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]+\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]
$$

which reduces to:

$$
\left[\mathrm{HPO}_{4}^{-2}\right]=\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]
$$

Solution Composition

| Species | Graph |  |
| :--- | :--- | :--- |
|  | C | pC |
| $\mathrm{H}^{+}$ | $2.2 \mathrm{e}-5$ | 4.65 |
| $\mathrm{OH}^{-}$ | $4.5 \mathrm{e}-10$ | 9.35 |
| $\mathrm{H}_{3} \mathrm{PO}_{4}$ | $2.8 \mathrm{e}-4$ | 3.55 |
| $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ | $1 \mathrm{e}-1$ | 1.0 |
| $\mathrm{HPO}_{4}^{-2}$ | $2.8 \mathrm{e}-4$ | 3.55 |
| $\mathrm{PO}_{4}^{-3}$ | $8 \mathrm{e}-12$ | 11.1 |
| $\mathrm{Na}^{+}$ | $1 \mathrm{e}-1$ | 1 |

## ii) 0.10 F Na2HPO4

PBE

$$
\left[\mathrm{PO}_{4}^{-3}\right]+\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]+2\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]
$$

which reduces to:

$$
\left[\mathrm{PO}_{4}^{-3}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]
$$

Solution Composition

| Species | Graph |  |
| :--- | :--- | :--- |
|  | C | pC |
| $\mathrm{H}^{+}$ | $1.7 \mathrm{e}-10$ | 9.75 |
| $\mathrm{OH}^{-}$ | $5.6 \mathrm{e}-5$ | 4.25 |
| $\mathrm{H}_{3} \mathrm{PO}_{4}$ | $8 \mathrm{e}-12$ | 11.1 |
| $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ | $2.8 \mathrm{e}-4$ | 3.55 |
| $\mathrm{HPO}_{4}^{-2}$ | $1 \mathrm{e}-1$ | 1 |
| $\mathrm{PO}_{4}^{-3}$ | $2.8 \mathrm{e}-4$ | 3.55 |
| $\mathrm{Na}^{+}$ | $2 \mathrm{e}-1$ | 0.7 |

## iii) 0.10 F Na3PO4

PBE

$$
\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]+3\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]+2\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]+\left[\mathrm{HPO}_{4}^{-2}\right]
$$

which reduces to:

$$
\left[\mathrm{OH}^{-}\right]=\left[\mathrm{HPO}_{4}^{-2}\right]
$$

Solution Composition

| Species | Graph |  |
| :--- | :--- | :--- |
|  | C | pC |
| $\mathrm{H}^{+}$ | $2.5 \mathrm{e}-13$ | 12.6 |
| $\mathrm{OH}^{-}$ | $4 \mathrm{e}-2$ | 1.4 |
| $\mathrm{H}_{3} \mathrm{PO}_{4}$ | $1 \mathrm{e}-17$ | 17 |
| $\mathrm{H}_{2} \mathrm{PO}_{4}-$ | $2 \mathrm{e}-7$ | 6.7 |
| $\mathrm{HPO}^{-2}$ | $4 \mathrm{e}-2$ | 1.4 |
| $\mathrm{PO}_{4}{ }^{-3}$ | $6.3 \mathrm{e}-2$ | 1.2 |
| $\mathrm{Na}^{+}$ | $3 \mathrm{e}-1$ | 0.5 |

B) Construct similar $\log \mathrm{C}$ vs pH diagrams for 0.10 F carbonate system ( H 2 CO 3 , HCO3-, CO3-2) and 0.20 F ammonia system (NH4+, NH3), and use this to calculate pH and composition of the following systems:
i) $0.10 \mathrm{~F} \mathrm{NaHCO}_{3}$
ii) $0.10 \mathrm{~F} \mathrm{NaHCO}_{3}+0.20 \mathrm{~F} \mathrm{NH}_{4} \mathrm{Cl}$
iii) $0.10 \mathrm{~F}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
iv) $0.10 \mathrm{~F} \mathrm{Na}_{2} \mathrm{CO}_{3}$

## Approach

* prepare Log C vs pH diagram
* write PBE for each solution
* locate pHs for each solution
* read off concentrations for each species


## Log C vs pH Diagram

* pKs are 6.3 and 10.3 for carbonate system; 9.3 for ammonia
* $\log \mathrm{C}_{\mathrm{T}}$ is -1 for carbonate system; -0.7 for ammonia

Log C vs pH Diagram


## i) $0.10 \mathrm{~F} \mathrm{NaHCO}_{3}$

PBE

$$
\left[\mathrm{CO}_{3}^{-2}\right]+\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]
$$

which reduces to:

$$
\left[\mathrm{CO}_{3}^{-2}\right]=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]
$$

Solution Composition

| Species | Graph |  |
| :--- | :--- | :--- |
|  | C | pC |
| $\mathrm{H}^{+}$ | $5 \mathrm{e}-9$ | 8.3 |
| $\mathrm{OH}^{-}$ | $2 \mathrm{e}-6$ | 5.7 |
| $\mathrm{H}_{2} \mathrm{CO}_{3}$ | $\mathrm{e}-3$ | 3 |
| $\mathrm{HCO}_{3}^{-}$ | $\mathrm{e}-\mathrm{e}-1$ | 1 |
| $\mathrm{CO}_{3}^{-2}$ | $1 \mathrm{e}-3$ | 3 |
| $\mathrm{Na}^{+}$ | $\mathrm{e}-1$ | 1 |

** this is the sum of $\left[\mathrm{CO}_{3}^{-2}\right](5.69 \mathrm{e}-4)$ and $\left[\mathrm{NaCO}_{3}^{-}\right]$(9.93e-4).

## ii) 0.10 F NaHCO3 + 0.20 F NH4Cl

PBE

$$
\left[\mathrm{CO}_{3}^{-2}\right]+\left[\mathrm{NH}_{3}\right]+\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]
$$

which reduces to:

$$
\left[\mathrm{NH}_{3}\right]=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]
$$

Solution Composition

| Species | Graph |  |
| :--- | :--- | :--- |
|  | C | pC |
| $\mathrm{H}^{+}$ | $2.5 \mathrm{e}-8$ | 7.6 |
| $\mathrm{OH}^{-}$ | $4 \mathrm{e}-7$ | 6.4 |
| $\mathrm{H}_{2} \mathrm{CO}_{3}$ | $5 \mathrm{e}-3$ | 2.3 |
| $\mathrm{HCO}_{3}^{-}$ | $1 \mathrm{e}-1$ | 1 |
| $\mathrm{CO}_{3}^{-2}$ | $1.8 \mathrm{e}-4$ | 3.75 |
| $\mathrm{NH}_{4}^{+}$ | $2 \mathrm{e}-1$ | 0.7 |
| $\mathrm{NH}_{3}$ | $5 \mathrm{e}-3$ | 2.3 |
| $\mathrm{Cl}^{-}$ | $2 \mathrm{e}-1$ | 0.7 |
| $\mathrm{Na}^{+}$ | $1 \mathrm{e}-1$ | 1 |

## iii) $0.10 \mathrm{~F}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

PBE

$$
\left[\mathrm{NH}_{3}\right]+\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]+2\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}^{-}\right]
$$

which reduces to:

$$
\left[\mathrm{NH}_{3}\right]=\left[\mathrm{HCO}_{3}^{-}\right]
$$

Solution Composition

| Species | Graph |  |
| :--- | :--- | :--- |
|  | C | pC |
| $\mathrm{H}^{+}$ | $5.6 \mathrm{e}-10$ | 9.25 |
| $\mathrm{OH}^{-}$ | $1.8 \mathrm{e}-5$ | 4.75 |
| $\mathrm{H}_{2} \mathrm{CO}_{3}$ | $7 \mathrm{e}-5$ | 4.2 |
| $\mathrm{HCO}_{3}-$ | $1 \mathrm{e}-1$ | 1 |
| $\mathrm{CO}_{3}{ }^{-2}$ | $8 \mathrm{e}-3$ | 2.1 |
| $\mathrm{NH}_{4}^{+}$ | $1 \mathrm{e}-1$ | 1.0 |
| $\mathrm{NH}_{3}$ | $1 \mathrm{e}-1$ | 1.0 |

## iv) $0.10 \mathrm{~F} \mathrm{Na}_{2} \mathrm{CO}_{3}$

## PBE

$$
\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]+2\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}^{-}\right]
$$

which reduces to:

$$
\left[\mathrm{OH}^{-}\right]=\left[\mathrm{HCO}_{3}^{-}\right]
$$

Solution Composition

| Species | Graph |  |
| :--- | :--- | :--- |
|  | C | pC |
| $\mathrm{H}^{+}$ | $2.2 \mathrm{e}-12$ | 11.65 |
| $\mathrm{OH}^{-}$ | $4.5 \mathrm{e}-3$ | 2.35 |
| $\mathrm{H}_{2} \mathrm{CO}_{3}$ | $2 \mathrm{e}-8$ | 7.7 |
| $\mathrm{HCO}_{3}{ }^{-}$ | $4.5 \mathrm{e}-3$ | 2.35 |
| $\mathrm{CO}_{3}{ }^{-2}$ | $1 \mathrm{e}-1$ | 1 |
| $\mathrm{Na}^{+}$ | $2 \mathrm{e}-1$ | 0.7 |

** this is the sum of $\left[\mathrm{CO}_{3}{ }^{-2}\right](2.8 \mathrm{e}-2)$ and $\left[\mathrm{NaCO}_{3}{ }^{-}\right](6.9 \mathrm{e}-2)$.

## 2. Acid/Base Equilibria III: Acids \& Conjugate Bases (2 POINTs)

## A. Calculate the composition and pH of the following solutions:

i) $0.10 \mathrm{~F} \mathrm{NaCOOH}+0.40 \mathrm{~F} \mathrm{HCOOH}$
ii) $0.20 \mathrm{~F} \mathrm{NH}_{3}+0.50 \mathrm{~F} \mathrm{NH}_{4} \mathrm{Cl}$

## General Approach

* these are solutions of acids and conjugate bases
* use the buffer equation, and its simplifying assumptions:

$$
\mathrm{pH}=\mathrm{pK} a+\log \left\{\mathrm{C}_{\mathrm{A}} / \mathrm{CHA}\right\}
$$

* $\mathrm{pK}{ }_{\mathrm{a}} \mathrm{s}$ are 3.75 for formic acid and 9.3 for ammonia


## i) 0.10 F NaCOOH + 0.40 F HCOOH

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left\{\mathrm{C}_{\mathrm{A}} / \mathrm{C}_{\mathrm{HA}}\right\} \\
\mathrm{pH}=3.75+\log \{0.1 / 0.4\} \\
\mathrm{pH}=3.15
\end{gathered}
$$

| Species | Equation | C | pC |
| :--- | :--- | :--- | :--- |
| $\mathrm{H}^{+}$ | buffer eq. | $7.1 \mathrm{e}-4$ | 3.15 |
| $\mathrm{OH}^{-}$ | $\mathrm{K}_{\mathrm{w}}$ | $1.4 \mathrm{e}-11$ | 10.85 |
| $\mathrm{HCOOH}^{\mathrm{COOH}}$ | $=\mathrm{C}_{\mathrm{HA}}$ | 0.4 | 0.40 |
| $\mathrm{Na}^{+}$ | $=\mathrm{C}_{\mathrm{A}}$ | 0.1 | 1 |
|  | $=\mathrm{C}_{\mathrm{A}}$ | 0.1 | 1 |

## ii) $0.20 \mathrm{~F} \mathrm{NH}_{3}+0.50 \mathrm{~F} \mathrm{NH}_{4} \mathrm{Cl}$

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left\{\mathrm{C}_{\mathrm{A}} / \mathrm{CHA}_{\mathrm{HA}}\right\} \\
\mathrm{pH}=9.3+\log \{0.2 / 0.5\} \\
\mathrm{pH}=8.90
\end{gathered}
$$

| Species | Equation | C | pC |
| :--- | :--- | :--- | :--- |
| $\mathrm{H}^{+}$ | buffer eq. | $1.2 \mathrm{e}-9$ | 8.90 |
| $\mathrm{OH}^{-}$ | $\mathrm{K}_{\mathrm{w}}$ | $8.0 \mathrm{e}-5$ | 5.10 |
| $\mathrm{NH}_{4}{ }^{+}$ | $=$CHA | 0.5 | 0.3 |
| $\mathrm{NH}_{3}$ | $=$ C $_{\mathrm{A}}$ | 0.2 | 0.7 |
| $\mathrm{Cl}^{-}$ | $=$CHA | 0.5 | 0.3 |

B. A 3.16x10-3 F solution of uric acid has a pH of 3.2. What is the pH of an equimolar solution (i.e., $3.16 \times 10-3$ F) of the Na+ salt of its conjugate base (Na-urate)?

## Approach

* prepare a Log C vs pH diagram, but working backwards
* known $\mathrm{C}_{\mathrm{t}}$, and known pH , find $\mathrm{pK}_{\mathrm{a}}$
* PBE suggests that pH lies at intersection of urate ( $\mathrm{Ur}^{-}$) line and the $\mathrm{H}^{+}$line
* draw line with +1 slope passing through $\mathrm{H}^{+}$line at $\mathrm{pH}=3.2$
* where it intersects $\mathrm{C}_{\mathrm{T}}$ is the $\mathrm{pK}_{\mathrm{a}}$ (about 3.8)
* then write PBE for base addition (i.e., NaUr) and solve


## Log C vs pH Diagram



## PBE for Base Addition (NaUr)

$$
[\mathrm{HUr}]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]
$$

which reduces to:

$$
[\mathrm{HUr}]=\left[\mathrm{OH}^{-}\right]
$$

Read pH from Graph

$$
\mathrm{pH}=7.65
$$

