Homework #3

1. Acid/Base Equilibria II: graphical method (4 POINTS)

Solve the following problems (A. and B.) graphically. Later in HW #4, I will ask you to solve them exactly using MINEQL. Show the graphs and circle your solution point. Then present the approximate concentrations in a table.

A). Construct a log C vs pH diagram for a 0.10 F phosphate (H3PO4, H2PO4-, HPO4-2, PO4-3) system. Using it, calculate the pH and the concentration of all species in the following solutions:

i) 0.10 F NaH2PO4

ii) 0.10 F Na2HPO4

iii) 0.10 F Na3PO4

Approach

- * prepare Log C vs pH diagram
- * write PBE for each solution
- * locate pHs for each solution
- * read off concentrations for each species

- * pKs are 2.1, 7.2, and 12.35
- * Log C_T is -1

i) 0.10 F NaH2PO4

PBE

$$[HPO4^{-2}] + 2[PO4^{-3}] + [OH^{-}] = [H^{+}] + [H_3PO4]$$

which reduces to:

 $[HPO_4^{-2}] = [H_3PO_4]$

Solution Composition

Species	Graph	
	С	pC
H^{+}	2.2e-5	<mark>4.65</mark>
OH-	4.5e-10	9.35
H ₃ PO ₄	2.8e-4	3.55
H ₂ PO ₄ ⁻	1e-1	1.0
HPO ₄ ⁻²	2.8e-4	3.55
PO_4^{-3}	8e-12	11.1
Na ⁺	1e-1	1

ii) 0.10 F Na2HPO4

PBE

$$[PO_4^{-3}] + [OH^{-}] = [H^{+}] + 2[H_3PO_4] + [H_2PO_4^{-}]$$

which reduces to:

$$[PO_4^{-3}] = [H_2PO_4^{-1}]$$

Solution Composition

Species	Graph	
	С	pC
H^+	1.7e-10	<mark>9.75</mark>
OH-	5.6e-5	4.25
H ₃ PO ₄	8e-12	11.1
H ₂ PO ₄ ⁻	2.8e-4	3.55
HPO ₄ ⁻²	1e-1	1
PO4 ⁻³	2.8e-4	3.55
Na^+	2e-1	0.7

iii) 0.10 F Na3PO4

PBE

$$[OH^{-}] = [H^{+}] + 3[H_{3}PO_{4}] + 2[H_{2}PO_{4}^{-}] + [HPO_{4}^{-2}]$$

which reduces to:

 $[OH^{-}] = [HPO_{4}^{-2}]$

Solution Composition

Species	Graph	
	С	pC
H^+	2.5e-13	<mark>12.6</mark>
OH-	4e-2	1.4
H ₃ PO ₄	1e-17	17
H ₂ PO ₄ ⁻	2e-7	6.7
HPO ₄ ⁻²	4e-2	1.4
PO4 ⁻³	6.3e-2	1.2
Na ⁺	3e-1	0.5

B) Construct similar log C vs pH diagrams for 0.10 F carbonate system (H2CO3, HCO3-, CO3-2) and 0.20 F ammonia system (NH4+, NH3), and use this to calculate pH and composition of the following systems:

i) 0.10 F NaHCO3

ii) 0.10 F NaHCO3 + 0.20 F NH4Cl

iii) 0.10 F (NH4)2CO3

iv) 0.10 F Na2CO3

Approach

- * prepare Log C vs pH diagram
- * write PBE for each solution
- * locate pHs for each solution
- * read off concentrations for each species

- * pKs are 6.3 and 10.3 for carbonate system; 9.3 for ammonia
- * Log C_T is -1 for carbonate system; -0.7 for ammonia

i) 0.10 F NaHCO3

PBE

$$[CO_3^{-2}] + [OH^{-}] = [H^{+}] + [H_2CO_3]$$

which reduces to:

 $[CO_3^{-2}] = [H_2CO_3]$

Solution Composition

Species	Graph	
	С	pC
H^+	5e-9	<mark>8.3</mark>
OH-	2e-6	5.7
H ₂ CO ₃	1e-3	3
HCO ₃ -	1e-1	1
CO_3^{-2}	1e-3	3
Na^+	1e-1	1

** this is the sum of $[CO_3^{-2}]$ (5.69e-4) and $[NaCO_3^{-1}]$ (9.93e-4).

ii) 0.10 F NaHCO3 + 0.20 F NH4CI

PBE

$$[CO_3^{-2}] + [NH_3] + [OH^{-}] = [H^{+}] + [H_2CO_3]$$

which reduces to:

 $[NH_3] = [H_2CO_3]$

Solution Composition

Species	Graph	
	С	pC
H^{+}	2.5e-8	<mark>7.6</mark>
OH-	4e-7	6.4
H ₂ CO ₃	5e-3	2.3
HCO3 ⁻	1e-1	1
CO3 ⁻²	1.8e-4	3.75
$\mathrm{NH_4}^+$	2e-1	0.7
NH3	5e-3	2.3
Cl ⁻	2e-1	0.7
Na ⁺	1e-1	1

iii) 0.10 F (NH4)2CO3

PBE

$$[NH_3] + [OH^-] = [H^+] + 2[H_2CO_3] + [HCO_3^-]$$

which reduces to:

 $[NH_3] = [HCO_3]$

Solution Composition

Species	Graph	
	С	pC
H^+	5.6e-10	<mark>9.25</mark>
OH-	1.8e-5	4.75
H ₂ CO ₃	7e-5	4.2
HCO ₃ -	1e-1	1
CO3 ⁻²	8e-3	2.1
$\mathrm{NH4}^+$	1e-1	1.0
NH ₃	1e-1	1.0

iv) 0.10 F Na2CO3

PBE

$$[OH^{-}] = [H^{+}] + 2[H_2CO_3] + [HCO_3^{-}]$$

which reduces to:

 $[OH^{-}] = [HCO_{3}^{-}]$

Solution Composition

Species	Graph	
	С	pC
H^+	2.2e-12	<mark>11.65</mark>
OH-	4.5e-3	2.35
H ₂ CO ₃	2e-8	7.7
HCO ₃ -	4.5e-3	2.35
CO3 ⁻²	1e-1	1
Na ⁺	2e-1	0.7

** this is the sum of $[CO_3^{-2}]$ (2.8e-2) and $[NaCO_3^{-1}]$ (6.9e-2).

2. Acid/Base Equilibria III: Acids & Conjugate Bases (2 POINTs)

A. Calculate the composition and pH of the following solutions:

i) 0.10 F NaCOOH + 0.40 F HCOOH

ii) 0.20 F NH3 + 0.50 F NH4Cl

General Approach

- * these are solutions of acids and conjugate bases
- * use the buffer equation, and its simplifying assumptions:
 - $pH = pK_a + log\{C_A/C_{HA}\}$
- * pKa's are 3.75 for formic acid and 9.3 for ammonia

i) 0.10 F NaCOOH + 0.40 F HCOOH

$$\label{eq:pH} \begin{split} pH &= pK_a + log\{C_A/C_{HA}\} \\ pH &= 3.75 + log\{0.1/0.4\} \\ pH &= 3.15 \end{split}$$

Species	Equation	С	pC
H^+	buffer eq.	7.1e-4	<mark>3.15</mark>
OH-	Kw	1.4e-11	10.85
НСООН	=C _{HA}	0.4	0.40
COOH ⁻	=C _A	0.1	1
Na ⁺	=C _A	0.1	1

ii) 0.20 F NH₃ + 0.50 F NH₄Cl

$pH = pK_a + \log\{C_A/C_{HA}\}$
$pH = 9.3 + \log\{0.2/0.5\}$
pH = 8.90

Species	Equation	С	pC
H^+	buffer eq.	1.2e-9	<mark>8.90</mark>
OH-	Kw	8.0e-5	5.10
NH4 ⁺	=C _{HA}	0.5	0.3
NH ₃	$=C_A$	0.2	0.7
Cl	=C _{HA}	0.5	0.3

B. A 3.16x10-3 F solution of uric acid has a pH of 3.2. What is the pH of an equimolar solution (i.e., 3.16x10-3 F) of the Na+ salt of its conjugate base (Na-urate)?

Approach

- * prepare a Log C vs pH diagram, but working backwards
- * known C_T, and known pH, find pK_a
- * PBE suggests that pH lies at intersection of urate (Ur⁻) line and the H⁺ line
- * draw line with +1 slope passing through H⁺ line at pH=3.2
- * where it intersects C_T is the pK_a (about 3.8)
- * then write PBE for base addition (i.e., NaUr) and solve

Log C vs pH Diagram

PBE for Base Addition (NaUr)

$$[HUr] + [H^+] = [OH^-]$$

which reduces to:

$$[HUr] = [OH^-]$$

Read pH from Graph