Homework #3

1. Acid/Base Equilibria II: graphical method

Solve the following problems (A. and B.) graphically. Later in question #4, I will ask you to solve them exactly using MINEQL. Show the graphs and circle your solution point. Then present the approximate concentrations in a table.

A). Construct a log C vs pH diagram for a 0.10 F phosphate (H₃PO₄, H₂PO₄⁻², HPO₄⁻², PO₄⁻³) system. Using it, calculate the pH and the concentration of all species in the following solutions:

i) 0.10 F NaH₂PO₄ *ii)* 0.10 F Na₂HPO₄ *iii)* 0.10 F Na₃PO₄

B) Construct similar log C vs pH diagrams for 0.10 F carbonate system (H_2CO_3 , HCO_3^- , CO_3^{-2}) and 0.20 F ammonia system (NH_4^+ , NH_3), and use this to calculate pH and composition of the following systems:

i) 0.10 F NaHCO3 ii) 0.10 F NaHCO3 + 0.20 F NH4Cl iii) 0.10 F (NH4)2CO3 iv) 0.10 F Na2CO3

2. Acid/Base Equilibria III: Acids & Conjugate Bases

A.) Calculate the composition and pH of the following solutions¹: *i*) 0.10 F NaCOOH + 0.40 F HCOOH *ii*) 0.20 F NH₃ + 0.50 F NH₄Cl

B.) A 3.16×10^{-3} F solution of uroic acid (a ficitious monoprotic acid) has a pH of 3.2. What is the pH of an equimolar solution (i.e., 3.16×10^{-3} F) of the Na⁺ salt of its conjugate base (Nauroate)?

Assigned: 12 Feb 20 Due:: 19 Feb 20

¹ The pK_a for formic acid is 3.75