CEE 577: Surface Water Quality Modeling

Lecture #41 TOC & THMFP Models II Scientific Literature

NYC: Cannonsville Case Study

Cannonsville Reservoir Study

- Algal & THM Precursor Models
 - Doerr, Stepczuk and others
- Cannonsville Reservoir
 - Part of Catskill-Delaware Supply for NYC
 - Dimictic; Eutrophic (impounded in 1965)
 - $P_{avg} = 30 \ \mu g/L$
 - Characteristics for 1995
 - Hydraulics
 - H_{mean}= 19 m
 - $V = 373 \times 10^6 \text{ m}^3$
 - $\tau_{\text{mean}} = 4.7 \text{ months}$
 - $SA = 19.3 \times 10^6 \text{ m}^2$
 - DA = $1160 \times 10^6 \text{ m}^2$

- Loading
 - $TOC = ? x 10^2 kg/yr$
 - $P = ? x 10^3 \text{ kg/yr}$
- For more, see the literature at:

https://www.ecs.umass.edu/eve/research/nyc_chloramines/literature.html

West Branch Delaware River

N

Trout Creek

Inflow

- West Branch of Delaware River (WBDR) ~80%
- Three outflows
 - Over spillway
 - Withdrawal to aqueduct
 - 10, 20^{**} or 37 m below spillway
 - Release at base of dam

(a)

Respiration

Zooplankton (P)

> Predation

CEE 577 #41

Nitrate+Nitrite

Forcing Functions Lower flows in 1995,

 Lower flows in 1995, resulted in lower loadings

PAR

- Photosyntheticallyactive radiation
 - Often defined as the light between 400 and 700 nm

Table 3.-Model coefficients independently determined to support the nutrient-phytoplankton model for Cannonsville Reservoir.

No. Coefficient	Symbol	Value/Units	Source
1. maximum specific growth rate for phytoplankton	μ_{max}	1.7 d ⁻¹	Auer and Forrer 1998
2. phytoplankton respiration rate	k _{ar}	0.29 d ⁻¹	Auer and Forrer 1998
3. light half saturation coefficient for phytoplankton growth	K ₁	53 μE · m ² · s ¹	Auer and Forrer 1998
4. background extinction coefficient	Kw	$= -0.018 \text{xWSE}^{\dagger} + 6.67$	Effler et al. 1998b
5. multiplier for Chl component of extinction	K _c	$0.02 \text{ m}^2 \text{mg}^{-1} \text{Chl}$	Effler et al. 1998b
6. decay coeffiicient for ANLPP mineralization	k _{pd}	0.20 d ⁻¹	Auer et al. 1998
7. sediment release rate SRP	Rsed _{srp,8}	0* mg·m ⁻² ·d ⁻¹	Erickson and Auer 1998
8. phosphorus half-saturation constant for phytoplankton growth	K _{srp}	0.5 μgP·L ⁻¹	Auer and Forrer 1998
9. biavailable fraction of non-living PP load	availp	25%	Auer et al. 1998
10. Chl settling velocity	vel _{chl}	0.17 m·d ⁻¹	Effler and Brooks 1998
11. settling velocity ANLPP and UNLPP	vel	0.94 m [·] d ⁻¹	Effler and Brooks 1998
12. settling velocity NLPN	vel_{PN}	0.46 m·d ^{·1}	Effler and Brooks 1998
13. SOD, at 20 °C	SOD ₂₀	$1.06 \text{ g} \cdot \text{m}^{-2} \cdot \text{d}^{-1}$	Erickson and Auer 1998
14. organic C to Chl ratio	а _{ссы}	80 µgC∙µgChŀ¹	Effler and Brooks 1998
15. organic C to N ratio of phytoplankton	a _{cn}	6.25 µgC∙µg№	Effler and Brooks 1998

* when bottom NO_x > 0.01 μ gN ·L⁻¹. CEWh677 Fottom is an oxic and NO_x < 0.01 μ gN ·L⁻¹.

+WSE = water surface elevation (m).

Table 4Re	esults of	sediment	oxygen	demand	l experi	iments.
-----------	-----------	----------	--------	--------	----------	---------

Date of Core Collection, 1995	Station	# of cores *	# of trials ^b	Mean±s.d. SOD ₈ (gO ₂ · m ⁻² · d ⁻¹)	Mean ± s.d. SOD ₂₀ (gO ₂ · m ² · d ⁻¹)
5-6 Iuly	2	3	5	0.64 ± 0.09	1.36 ± 0.18
<i>a oju-</i> /	4	3	3	0.44 ± 0.03	0.93 ± 0.06
	5	2	3	0.46 ± 0.06	0.98 ± 0.10
29-30 August	2	1	3	0.45 ± 0.07	1.04 ± 0.10
	4	1	3	0.46 ± 0.08	1.02 ± 0.17
	5	1	3	0.45 ± 0.05	0.96 ± 0.10
Overall		11	20	0.50 ± 0.11	1.06 ± 0.23

* total number of cores per station.

^b total number of trials for cores collected at the same station and sampling time.

SOD continued

In-situ device

Figure 5.-The relationship between chemical oxygen demand (COD) and sediment oxygen demand (SOD).

Model Performance

- Weekly measurement in water column
- Objective: monthly average within 2 standard deviations

Performance II

• Systematic depletions of:

- Epilimnetic NO_x
- Hypolimnetic DO
- Over-prediction of ammonia?

Performance: DO

 Progressive depletion of DO in hypolimnion

Verification

 Problem with limited data in 1994

Verification

CEE 577 #41

Verification

Cannonsville THMs: General Info

• Major Papers

- Stepczuk, Martin, Longabucco, Bloomfield & Effler, 1998
 - "Allochthonous Contributions of THM Precursors in a Eutrophic Reservoir", J. Lake & Res. Mgmt., 14(2/3)344-355
- Stepczuk, Martin, Effler, Bloomfield & Auer, 1998
 - "Spatial and Temporal Patterns of THM Precursors in a Eutrophic Reservoir", J. Lake & Res. Mgmt., 14(2/3)356-366
- Stepczuk, Owens, Effler, Bloomfield & Auer, 1998
 - "A Modeling Analysis of THM Precursors for a Eutrophic Reservoir, J. Lake & Res. Mgmt., 14(2/3)367-378
- THMFP Method
 - Method 5710B of Standard Methods
 - pH 7.0, 7 days, 25 C, dosed to get >1.0 mg/L residual
 - Average CV was 4% for field replicates

1995 Data

- Severe Drought
- Net production of precursors in **Epilimnion is evident** from THMFP data

Mass Balance Model: THMFP

$$^{\Delta}M = W - E + S$$
$$S = ^{\Delta}M - W + E$$

Terms

- W = allochthonous mass loading
 - From tributaries
- E = mass export by outflow
- From tributa. £ = mass export by outflow Spill + release + water supply withdrawal ...+ochthonous production
- S = net autochthonous production

Mass Balance Model: DOC

 Mid-summer drop in S Not seen with THMFP Lower average S:W ratio • 1.7 for THMFP • 0.7 for TOC

Mass Balance Model: S

- Monthly changes in S
 - Incremental not cumulative
 - No apparent correlation between net production of THMFP and DOC
 - Raises questions about use of TOC as a surrogate for THMFP

Stepczuk et al., 1998, J. Lake & Res. Mgmt., 14(2/3)367-378

2-Layer model

- Spatial resolution
 - Epilimnion
 - Designated "1" or "E"
 - Hypolimnion
 - Designated "2" or "H"
- Loading (W)
 - Measured stream data for epilimnion

 $V_1 \frac{dc_1}{dt} = W_1 - Q_1 c_1 + E'_{12} (c_2 - c_1) - V_1 S_1$ $V_2 \frac{dc_1}{dt} = W_2 + Q_2 c_2 + E'_{12} (c_1 - c_2) - V_2 S_2$

- Outflow (Q)
 - Separated based on withdrawal location
- Mixing (E)
 - From temperature data
- Net production (S)
 - Not directly observed

Stepczuk et al., 1998, J. Lake & Res. Mamt., 14(2/3)367-378

Estimation of vertical Dispersion Coefficient

Owens, 1998, J. Lake & Res. Mgmt., 14(2/3)152-161

Select of S (cont.)

- Intermediate option
 - Fit S₁ to data
 - Set S₂ to zero
- Justification for S₂ =0
 - No algal growth in hypolimnion
 - Allochthonous THMFP originally trapped in hypolimnion is recalcitrant

Stepczuk et al., 1998, J. Lake & Res. Mgmt., 14(2/3)367-378

Mechanistic Model for S

• Sub-model for algal FP production

Mechanistic Model for S

- Sub-model for degradation of THMFP
 - Independent 1st order loss terms for autochthonous and allochthonous forms

$$\frac{d(THMFP_{autochthonous})}{dt} = -k_{L(au)}THMFP_{autochthonous}$$
$$\frac{d(THMFP_{allochthonous})}{dt} = -k_{L(al)}THMFP_{allochthonous}$$

Mechanistic Model

- Results based on:
 - Two Scenarios
 - No decay of any THMFP in hypolimnion
 - No decay of allochthonous THMFP
 - Fitted K_L values

Stepczuk et al., 1998<u>, J. Lake &</u> <u>Res. Mgmt</u>., 14(2/3)367-378

CEE 577 #41

150

Apr

May

Jun

1995

Aug

Jul

Nov

Oct

Sep

2-Layer model

- Spatial resolution
 - Epilimnion
 - Designated "1" or "E"
 - Hypolimnion
 - Designated "2" or "H"

$$V_{1} \frac{dc_{1}}{dt} = W_{1} - Q_{1}c_{1} + E'_{12}(c_{2} - c_{1}) - V_{1}S_{1}$$

$$V_{2} \frac{dc_{1}}{dt} = W_{2} + Q_{2}c_{2} + E'_{12}(c_{1} - c_{2}) - V_{2}S_{2}$$
Stepczuk et al., 1998, J. Lake & Res. Mgmt., 14(2/3)367-37

• <u>To next lecture</u>