CEE 577: Surface Water Quality Modeling

Lecture #40

Limnology (cont.): Carbon & Precursor Models I

(Scientific Literature)
Full cycle analysis

- Dishwashing detergent causes
 - Miscarriages
 - Birth defects
 - Cancer

- How?

137,000 at risk in US

See: Gray et al., 2001 [Consider the Source, Environmental Working Group report]
241,000,000 people in US are served by PWSs that apply a disinfectant

High THMs are levels of at least 80 ppb over a 3 month average
New York Water Supply System Tunnels and Aqueducts
Front half of cycle

- Causal pathways for eutrophication effects on water supplies

Watershed Variables
 - Land use
 - Morphometry
 - Watershed Mgmt.
 - Climate
 - Geology
 - Hydrology

Reservoir Eutrophication
 - Nutrients
 - Algae
 - Transparency
 - Oxygen Depletion

Raw Water Quality
 - pH
 - Turb.
 - Odor
 - Fe
 - Mn
 - Ammonia
 - DOC
 - Color
 - Precursors

Treatment & DWS Mgmt.
 - Filtration
 - GAC
 - Disinfection
 - Doses
 - Dist. Sys.
 - Monitoring
 - Color
 - Fe/Mn
 - Odor
 - DBPs
 - Biodegradables

Treated Water Quality
 - Plumbing
 - Clothing
 - Aesthetics
 - Disease
 - Chronic Effects

User Impacts
 - Health
 - Costs

Modified from: Walker, 1983
Nature of NOM in Water

- Most systems are dominated by DOC
 - 85-98% of TOC

<table>
<thead>
<tr>
<th>Autochthonous</th>
<th>Particulate</th>
<th>Dissolved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Algae</td>
<td>Excretion or lysis of Littoral sources (macrophytes, attached microflora) and Pelagic sources (phytoplankton)</td>
</tr>
<tr>
<td>Allochthonous</td>
<td>Soil, terrestrial plant detritus</td>
<td>Soluble components from terrestrial plants; soil organics (fulvic acids)</td>
</tr>
</tbody>
</table>
NOM Modeling

- An important current issue
 - Affects Drinking water treatment
 - Not well studied
- Bears similarities to N&P modeling
 - Natural and human sources
 - Biologically active (consumed & produced)
 - May be closely linked to primary productivity
 - Empirical & mechanistic approaches
- Complex
 - Many types of NOM, some produce DBPs, most don’t
Empirical Models: Algae and TOC

- Walker, 1983
 - Pointed out the long held knowledge that P and primary productivity (e.g., chlorophyll) were positively correlated
 - Also pointed out that primary productivity means more TOC
 - Tied this to drinking water reservoir management
 - Presented some new data showing this correlation in 38 US lakes

Walker, 1983, J. AWWA, 75(1)38-42
Empirical Models: P and C

- From Walker’s paper
- Slightly better correlation than with Chl a
- Is this causal or just autocorrelation with another parameter
- autochthonous source for TOC?

Walker, 1983, J. AWWA, 75(1)38-42
Other Empirical Models: DBPs

- Disinfection byproduct (DPB) precursors
- Empirical modeling hypotheses:
 - P-loading controls P concentration
 - P concentration controls algal growth
 - Algal growth controls TOC
 - DBP precursors are a sub-fraction of TOC
 - Therefore, P-loading controls DBP precursors
Chapra et al., 1997

- Chapra, Canale & Amy
- Added more data to Walker’s correlation
 - **TOC = 0.55 TP^{0.655}**
 - Where TOC is in mg/L
 - TP is total phosphorus in µg/L

Chapra et al., 1997, *J. Env. Eng. ASCE*, 123(7)714-715
Chapra et al., 1997 (cont.)

- Related this to THM precursor content
 - $\text{THMFP} = 43.78 \text{ TOC}^{1.248}$
- Used data from:
 - Amy, Edzwald, Miller, Bader
- No quantitative assessment of uncertainty

Chapra et al., 1997, *J. Env. Eng. ASCE*, 123(7)714-715
The next step that they chose not to take just yet was to combine the two models

- THMFP = 20.8 TP^{0.79}

- Probably not a good idea because the two models were from completely different data bases

- Uncertainty in both models probably makes this an “order of magnitude” estimate

- Perhaps the final step in this process is to combine with a THM formation model incorporating actual chlorination conditions

Weaknesses

- Does not account for allochthonous sources

- No site-specific considerations

- No spatial or temporal resolution
DBP Precursor Case Studies

- Deer Creek Reservoir, UT
 - 1981-83
 - Cook et al., 1984, White & Adams, 1985
- Lake Rockwell, OH
 - 1985-87
 - Palmstrom et al., 1988
- Lake Youngs, WA
 - 1992
 - Canale et al., 1997
- Cannonsville Reservoir, NY
 - 1995
 - Stepczuk et al., 1998a, b, c
- San Jaoquin Delta, CA
 - 1996
 - Fuji et al., 1998
- Cambridge Reservoirs, MA
 - 1997-98
 - Waldron & Bent, 2001
- Chickahominy River, VA
 - 1998
 - Speiran, 2000
- Boston Reservoirs, MA
 - 1997-2002
 - Garvey, Takiar, Bryan et al.
Deer Creek Reservoir Study

- **TOC/THM Precursor Studies**
 - Adams and others

- **Deer Creek**
 - Supply for Salt Lake City, UT
 - Meso-Eutrophic (impounded in 1941)
 - \(P_{\text{avg}} = ? \mu g/L \)

- **Characteristics for 1985-87**
 - **Hydraulics**
 - \(H_{\text{mean}} = 18.4 \text{ m} \)
 - \(V = 193.9 \times 10^6 \text{ m}^3 \)
 - \(\tau_{\text{mean}} = 6 \text{ months} \)
 - \(SA = 2787 \text{ ac} = 11.28 \times 10^6 \text{ m}^2 \)
 - \(DA = 1451 \times 10^6 \text{ m}^2 \)
 - **Loading**
 - \(\text{TOC} = ? \times 10^2 \text{ kg/yr} \)
 - \(P = ? \times 10^3 \text{ kg/yr} \)

White & Adams, 1985; UWRL Report #Q-85/01

David Reckhow CEE 577 #40
Deer Creek Res.: Loading

- Tributary Concentrations
Deer Creek Res: Microcosms

- Impact of:
 - Light
 - Phosphorus
 - sediments
Deer Creek Res.: Conclusions

- **Reservoir/Tributary Studies**
 - No change in THMFP across reservoir (in vs. out)
 - THMPF concentrations in tributaries were greatest in June and lowest in November
 - No correlation between TOC and THMFP

- **Microcosm Studies**
 - Sediments had no effect on THMFP
 - Algal activity (light) resulted in higher THMFP
 - Elevated P resulted in higher THMFP
 - Algal growth products were more important than decay products
 - Application of CuSO\(_4\) had no impact
 - No correlation between TOC and THMFP
Lake Rockwell Study

- THM Precursor Budget
 - Palmstrom, Carlson & Cooke

- Lake Rockwell
 - Supply for Akron, OH
 - Very Eutrophic (impounded in 1919)
 - $P_{avg} = 50 \mu g/L$

- Characteristics for 1985-87
 - Hydraulics
 - $H_{mean} = 3.9 \text{ m}$
 - $V = 10.2 \times 10^6 \text{ m}^3$
 - $\tau = 20 \text{ d}$
 - $SA = 311 \text{ ha} = 3.1 \times 10^6 \text{ m}^2$
 - Loading
 - $\text{THMFP} = 3-14 \times 10^2 \text{ kg/yr}$
 - $P = 2.8 \times 10^3 \text{ kg/yr}$

Palmstrom et al., 1988, *Lake & Res. Mgmt.*, 4(2)1-15
Input-output for 1985

- Low levels in winter
 - 160 µg/L average
- Increase across reservoir in early summer
 - ~ 30% increase

Palmstrøm et al., 1988, *Lake & Res. Mgmt.*, 4(2)1-15
Input-output for 1986-87

- Sometimes increase across reservoir in early summer
 - ~ 30% increase on average
 - Seen in 1985 and 1986
- Sometimes no increase
 - 1987

Palmstrom et al., 1988, Lake & Res. Mgmt., 4(2)1-15
Macrophyte Growth

- Microcosm studies with
 - Artificial lake water (control)
 - Sediments & water
 - Macrophytes, sediments & water

Macrophyte Degradation

- *Myriophyllum spicatum*
- Degradation in the dark
- Precursors released only under aerobic conditions

Palmstrom et al., 1988, *Lake & Res. Mgmt.*, 4(2)1-15
Release from Sediments

- Aerobic
 - High production

- Anaerobic
 - Far less production

Martin et al., 1993, Wat. Res., 27(12)1725-1729
Sediment Release (cont.)

- Summary of rate experiments
 - μg THMFP/m2/day

Martin et al., 1993, Wat. Res., 27(12)1725-1729
Model

- No mention of biodegradation of THM precursors
- Used site-specific macrophyte data

Palmstrom et al., 1988, *Lake & Res. Mgmt.*, 4(2)1-15
Estimated Loadings

- **Modeling results**
 - Riverine
 - Macrophyte
 - Degradation
 - Active growth
 - Sediments
 - Littoral
 - Profundal
 - Algae

<table>
<thead>
<tr>
<th></th>
<th>Palmstrom et al., 1988</th>
<th>Martin et al., 1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverine</td>
<td>47</td>
<td>63-204</td>
</tr>
<tr>
<td>Macrophyte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degradation</td>
<td>22</td>
<td>0.08-2.1</td>
</tr>
<tr>
<td>Active growth</td>
<td>0.85</td>
<td>0.82</td>
</tr>
<tr>
<td>Sediments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Littoral</td>
<td>0.014</td>
<td>0.26</td>
</tr>
<tr>
<td>Profundal</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Algae</td>
<td>0.1 – 100</td>
<td>21-103</td>
</tr>
</tbody>
</table>

Palmstrom’s algae loading based on a single net algal carbon production rate (0.33 g/m²/d) and a fixed THM/TOC ratio from the literature (Hoehn et al., 1980)

Reference:
- Martin et al., 1993
- Palmstrom et al., 1988

Re-evaluated some of the earlier data
Lake Youngs Study

- Mechanistic Carbon Model
 - Canale, Chapra, Amy & Edwards

Lake Youngs

- Supply for Seattle, WA
- Oligotrophic (impounded in 1923)
- Characteristics for 1992
 - Hydraulics
 - $H_{\text{mean}} = 14.7$ m
 - $H_{\text{max}} = 30.5$ m
 - $V = 41.6 \times 10^6$ m³
 - $\tau = 125$ d
 - $SA = 2.83 \times 10^6$ m²

- Loading
 - Total C = 2.38×10^3 kg/yr
 - P = 1.12×10 kg/yr

David Reckhow CEE 577 #40
Mechanistic Development

- 3 Carbon types
 - DOC (decays)
 - Allochthonous
 - Autochthonous
 - PtOC (settles)
 - From both
- Processes excluded
 - based on Lake Rockwell papers
- Macrophyte release of DOC
- Sediment DOC release set to zero

Parameter Estimation

- Site-specific measurements (2)
 - Settling rate
 - Sediment traps used
- THMFP yield

- Other parameters (14)
 - Literature values
 - With “model calibration”
 - Included some use of in-situ algal data

TABLE 1. Kinetic Coefficient Values for Lake Youngs THMFP Model

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value (2)</th>
<th>Basis (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settling velocity</td>
<td>66 m/yr</td>
<td>Entranco (1993, 1994); direct measurement</td>
</tr>
<tr>
<td>THMFP yield</td>
<td>2.5%</td>
<td>Entranco (1993, 1994); direct measurement</td>
</tr>
<tr>
<td>Algal maximum growth rate</td>
<td>1.5/d</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
<tr>
<td>Algal respiration</td>
<td>0.25/d</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
<tr>
<td>Light half-saturation</td>
<td>250 μE/m²/s</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
<tr>
<td>Phosphorus half-saturation</td>
<td>3 mg/m³</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
<tr>
<td>Zooplankton grazing</td>
<td>2.5 L/(mgC d)</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
<tr>
<td>Zooplankton respiration</td>
<td>0.075/d</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
<tr>
<td>Grazing efficiency</td>
<td>0.5</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
<tr>
<td>Algal carbon half-saturation</td>
<td>0.2 mg/L</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
<tr>
<td>Sediment P release</td>
<td>1 mg/m²/d</td>
<td>Nürnberg 1988; model calibration</td>
</tr>
<tr>
<td>Sediment oxygen demand</td>
<td>0.3 g/m²/d</td>
<td>Thomann and Mueller 1987; model calibration</td>
</tr>
<tr>
<td>TOC oxidation</td>
<td>0.025/d</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
<tr>
<td>Refractory TOC</td>
<td>0.5 mg/L</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
<tr>
<td>Hydrolysis</td>
<td>0.025/d</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
<tr>
<td>Reaeration</td>
<td>0.2/d</td>
<td>Bowie et al. 1985; model calibration</td>
</tr>
</tbody>
</table>

Used the same fixed THMFP:TOC relationship as in Chapra et al., 1997

Canale et al., 1997, J. Wat. Res. Planning & Mgmt., 33:259-265
Resolution

- **Spatial**
 - 2 vertical layers

- **Temporal**
 - Time variable for
 - Temperature
 - Determines vertical exchange coefficient
 - Light
 - Flow
 - loading

Canale et al., 1997, J. Wat. Res. Planning & Mgmt., 33:259-265
Algae

TOC & FP

- TOC and D.O. models

- THMFP = 0.25 \times TOC

Sources

- Based on existing loading & P levels

- Based on hypothetical elevated P and low TOC loading

Dissolved Autochthonous/Allochthonous = 0.1-0.5
Implications

TABLE 3. Calculated Days of Violation of 50 μg/L THMFP Goal for Various TP and TOC Load Combinations

<table>
<thead>
<tr>
<th>Total P (1)</th>
<th>Loading conditions TOC (2)</th>
<th>Days of Violations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Surface waters (3)</td>
</tr>
<tr>
<td>Current</td>
<td>Current</td>
<td>79</td>
</tr>
<tr>
<td>Decrease (90% reduction)</td>
<td>Current</td>
<td>66</td>
</tr>
<tr>
<td>Current</td>
<td>Decrease (25% reduction)</td>
<td>0</td>
</tr>
<tr>
<td>Increase (double)</td>
<td>Current</td>
<td>91</td>
</tr>
<tr>
<td>Current</td>
<td>Increase (25% increase)</td>
<td>114</td>
</tr>
<tr>
<td>Increase (double)</td>
<td>Decrease (25% reduction)</td>
<td>34</td>
</tr>
</tbody>
</table>

Canale et al., 1997, J. Wat. Res. Planning & Mgmt., 33:259-265
Leaching of NOM from litterfall, soils etc.
• To next lecture