

What is a TMDL?

- Total Maximum Daily Load
- Term coined in 1972 Clean Water Act
- TMDL has different meanings
 - Technical: Pollutant mass balance
 - Regulatory: Water quality program

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

,

Basis: State Water Quality Standards

- A water quality standard defines the water quality goals of a water body.... by designating the use or uses to be made of the water and setting criteria necessary to protect the uses. (40 CFR Part 131)
- Criteria established in standards
 - numerical (2 ug/L copper)
 - narrative (no toxics in toxic amounts)
 - · Requires quantification with indicator

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

Background: TMDL Basis

 Quantitative Expression for acceptable pollutant load in waterbody or stream segment:

TMDL & LC \Rightarrow WLAs + LAs [+MOS]

 TMDL also referred to as assimilative capacity of the waterbody

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

5

Background: TMDL Basis

• Where:

LC = Loading Capacity of waterbody for pollutant usually determined by water quality modeling

WLA (Waste Load Allocation) = portion of LC allocated to point source

LA (Load Allocation) = portion of LC allocated to nonpoint source / natural background

MOS = Margin of Safety for uncertainty

- Explicitly as added load or
- Implicitly as safety factors in modeling

David Reckhow

CEE 577 #38

Slide courtesy of: Dick Schwer

Background: TMDL Basis

- Began as Quantitative Expression:
 TMDL & LC ⇒ WLAs + LAs [+MOS]
- Where:

LC = Loading Capacity of waterbody for pollutant usually determined by water quality modeling

WLA (Waste Load Allocation) = portion of LC allocated to permitted point source

LA (Load Allocation) = portion of LC allocated to nonpoint source / natural background

MOS = Margin of Safety for uncertainty

- · Explicitly as added load or
- Implicitly as safety factors in modeling

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

7

Load Allocation Sources

- Agricultural Runoff
- Urban Runoff
- Non-permitted Storm Water
- Construction Site Runoff
- Atmospheric Deposition
- Ground Water Infiltration
- Contaminated Sediment

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

TMDL Illustration: Pollutant "X" Loading Reduction

Source	PS1 Lb/dy	PS2 Lb/dy	NPS(s) Lb/dy		MOS Lb/dy	Future Growth Lb/dy	
Current Loading	20	10	50	20			100
TMDL Allocat'n		1 WLA2		20	5	2	50
% Reduct'n	90%	90%	60%				50%

Slide courtesy of: Dick Schwer

David Reckhow CEE 577 #38

9

TMDL Implementation Quandry

- **#** For permitted point sources:
 - $TMDL \rightarrow WLA_1 \rightarrow permit limits$
- # For nonpoint sources

TMDL \rightarrow LA \rightarrow best management practices (BMPs)

✓ Consequently, for point sources limits can be imposed <u>but</u> for nonpoint sources we rely on voluntary BMPs

Slide courtesy of: Dick Schwer

avid Reckhow CEE 577 #38

TMDL Program Requirements

- Authorized in 1972 Water Pollution Control Act by Section 303(d)
- States required to
 - List impaired waterbodies every 2 years
 - Develop TMDLs for listed waters
 - Implement control strategies to comply
- EPA oversight required to
 - Approve State 303(d) Lists and TMDLs
 - or Disapprove and issue Lists/TMDLs

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

11

TMDL Program Reactivation

- EPA & States "ignored" for 20 years
- Environmental groups have filed ~45 lawsuits against EPA for lack of 303(d) enforcement of TMDL Program
- EPA response
 - Issued tighter guidance for 1998 lists
 - Set up TMDL Federal Advisory Group
 - Group issued June 1998 Report
 - Over 100 recommendations to improve TMDL program

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

TMDL Rulemaking Saga

- August 1999: EPA proposed TMDL Rule
- Early 2000: Lobbying in Congress by nonpoint source interests against rule
- June 2000: House & Senate pass emergency appropriations bill
 - Rider to block implementing Final Rule
- #July 2000: EPA signs Rule
 - ****But delays effective date of Rule to October 31,** 2001 to avoid rider
- November 2000: EPA sued on delayed Rule

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

13

Current Rulemaking Status

- October 2001: EPA further delayed Rule 18 months to April 2003
- Oct-Dec 2001: EPA held 5 "listening sessions" for public on possible changes
- November 2001: EPA issued guidance for State impaired waters listings due October 2002
- EPA currently completing draft of revised TMDL rule

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

Rulemaking Process & Advocacy

- EPA meeting with interest groups & lawsuit litigants to discuss potential changes to rule
 - EPA will call this "Watershed Rule"
- Rule to Office of Management & Budget (OMB) by late May for review
- Proposal for public comment late June
- Rule expected to be promulgated early 2003

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

15

Current TMDL Program

- Current regulations in effect
 - Code of Federal Regs Part 130.7 (1992)
- Program driven by enviro. groups suits
- States listing with poor quality data
- Troublesome listing issues:
 - threatened waters, air deposition, pollution
- Lack of specific guidance for TMDLs
- Emphasis on point sources and WLAs

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #3

b

Typical Steps in Developing TMDL

- Criteria in water quality standard found to be exceeded and water body (or stream segment) listed as impaired
- Additional data collected on pollutant concentrations, sources and loadings
- Water quality modeling to determine reductions needed to meet criteria
- Sources assigned WLAs or LAs

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

17

What's Missing?

- Implementation of the loadings from TMDL
- Not considered part of TMDL
 - Some groups (environmental) disagree
- Requires subsequent action by State and EPA
 - NPDES permit limits for point sources
 - Best management practices for nonpoint sources

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

Impaired Waters Listing & TMDL Information

- 1998 & 2000 Lists →
 - 21,000 Impaired Waters &
 - 42,000 Impairments
 - Top Impairments
 - Sedimentation & Siltation 5876
 - Pathogens 5421
 - Metals 4874
 - Nutrients 4697
 - Organic enrichment/ Low DO 4451

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

19

Impaired Waters Listing & TMDL Information

- Approved TMDLs since 1996
 - Total 4061
 - Pollutants
 - Metals 1163
 - Nutrients 666
 - Pathogens 624
 - Sediment & Siltation 429
 - Organic enrichment/ Low DO 280
- EPA TMDL website URL
 - http://www.epa.gov/owow/tmdl/

Slide courtesy of: Dick Schwer

David Reckhov

CEE 577 #38

EPA Approach to New TMDL Rule

- Now called "Watershed Rule"
- Implementation will be addressed separately by each State under Continuing Planning Process (CPP)
- CPP to be "reinvigorated"
 - Stronger requirement to implement
 - Develop of Watershed Plans in 2 years
 - Cover range of issues from Water Quality Standards to Implementation Planning

Slide courtesy of: Dick Schwer

David Reckhow CEE 577 #3

EPA Approach to New TMDL Rule

- Listing cycle increased to 4-5 years
- But no specific minimum quality data required to list
 - "All existing and readily available data and information must be considered"
- List waters in one of 5 categories
 - Basis: concerns for impairment and data
 - Only one category of impaired waters (5)
- Air deposition issue still not resolved

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

25

EPA Approach to New TMDL Rule

- Pollutant minimization plans for insignificant sources, not "zero"
- Allocation basis
 - Specific allocations for each point source
 - Group allocations for nonpoint sources
- Should not inhibit pollutant trading between sources or source and NPS
- Address wet weather sources
- Watershed permitting

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

Issues and Concerns about TMDL Program

- Criteria & uses that are appropriate
- Sufficient water quality data to determine if criterion is exceeded
- Sufficient data on pollutant loads and concentration to enable modeling
- Adequate water quality model to address fate and transport issues
- Accurate assessment of load reduction requirements

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

27

Issues and Concerns about TMDL Program

- Sufficient and reasonable Margin of Safety assessment based on science
- Implementation that is effective and reasonable to meet criteria
- Adequate follow-up monitoring to determine when and if criteria met
- Has been a divisive program
- Should not be the only "game in town"
 - Other watershed approaches available

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

What's Good About TMDL Program?

- Can serve as a catalyst for real water quality improvement
- Focus is achieving water quality standards (uses and criteria)
- Should enable improved water quality assessment and modeling tools
- Should put more emphasis on achieving nonpoint source reduction

Slide courtesy of: Dick Schwer

David Reckhow

CEE 577 #38

29

Analysis of MA TMDL studies

- 561 freshwater lakes fail to meet MA Surface WQ standards (303d list)
 - 527 due to nutrient related problem
 - 469 due to nuisance aquatic plants from nutrient enrichment
 - 90% are for macrophytes
 - rooted species are not expected to be affected by change in P loading
 - 10% are for algae
 - 58 due to other nutrient related problems
 - · Low DO, turbidity from algae

Mattson & Isaac, 1999; <u>J. Lake & Res. Mgmt.</u> 15:3:209

David Reckhow

CEE 577 #38

Average Runoff = Lake area = Homes with septic system Other P inputs = Watershed information:		61.0 cm·yr³ (24.0 in·yr¹) 126.8 Ha. (313.1ac) 95.0 0.0 kg·yr³			s of MA
Watershed Area (including lake and wetlands)= Average Annual Water Load = Areal water loading to lake: q =		971.7 Ha (3.8 mi²) 5923451.0 m³· yr¹ (6.7 cfs) 4.7 m·yr¹.			; VII
Part B. Estimate of annua	d Nonpoint Source Pollut	ion Loads by land use	<u>:</u>) VII
Land use	Area Ha (%)	P Load kg·yr-1 (%)	N Load kg·yr¹	TSS Load kg·yr¹	
Forest category Forest:	524.1 (53.9)	68.1 (25.0)	1310.2	12577.4	
Rural category Agriculture: Open land: Residential Low:	77.2 (7.9) 18.0 (1.8) 171.7 (17.7)	23.2 (8.5) 5.4 (2.0) 51.5 (18.9)	762.7 93.4 944.4	27821.2 3985.2 66623.1	Bare Hill Pond Case Study
Urban category Residential High: Comm - Ind: Other Land uses	27.7 (2.9) 2.8 (0.3)	70.2 (25.7) 7.1 (2.6)	152.4 28.0	12913.0 108.7	Harvard, MA44 ug/L
Water: Wetlands:	130.6 (13.4) 19.6 (2.0)	0.0 (0.0) 0.0 (0.0)	0.0 0.0	0.0 1038.7	measured P
Subtotal	971.7	225.5	3412.4	126680.7	
Other P inputs: 95.0 Septics:	NA NA	0.0 (0.0) 47.5 (17.4)			
Total	971.7 (100.0)	273.0(100)	3412.4	126680.7	
Part C. Summary of Lake		ng Results			_
Areal P loading L= 0.2 g · n Reckhow (1979) model p Predicted transparency = 9 If all land were forested, P And the forested condition Thus anthropogenic input	redicts lake TP = L/(11.6+ 3.8 meters. export would be 106.8 kg n lake TP would be 4.9 pp	ζ·yr ⁻¹ ib.	$\mathbf{L}_{\mathbf{I}}$		
Thas anti-ropogenic input The Trophic State Index I The Lake is predicted to b	as increased from 27.1 to	40.6			36

