

Special Considerations for Metals

- In general they are not subject to decomposition
 - e.g., biodegradation, hydrolysis, photolysis
 - exception: radionuclides undergo radioactive decay
- Most do not volatilize (Hg is an exception)
- They speciate into may forms which differ in toxicity and behavior
- Natural background and non-point loadings may be quite high

David Reckhow CEE 577 #35

The ratio of sediment feedback to total sediment purging
$$F'_r = \frac{v_r + v_d F_{d2}}{v_r + v_b + v_d F_{d2} + k_2 H_2}$$
 radioactive decay only

Toxicant Concentration in the Mixed Sediments

Either Lake or River Model:

$$c_2 = \frac{v_s F_{p1} + v_d F_{d1}}{k_2 H_2 + v_r + v_b + v_d F_{d2}} c_1$$

David Reckhow

CEE 577 #35

Simplified Versions

- Level o
 - no movement from sediment to water column
 - $V_r = 0$, $V_d = 0$
 - therefore, $F'_r = o$

$$K_{T1} = k_1 + \frac{v_v}{H_1} f_{d1} + \frac{v_s}{H_1} f_{p1}$$

- Now c₂ has no effect on c₁ and we return to a one compartment model
 - all time-variable solutions can be applied

David Reckhow

CEE 577 #35

Simplified Versions (cont.)

- Level 1
 - no volatilization, no decomposition
 - $v_v = o, k_1 = o, k_2 = o$

$$K_{T1} = k_1 + \frac{v_v}{H_1} f_{d1} + \left(1 - F_r'\right) \left(\frac{v_s}{H_1} f_{p1} + \frac{v_d}{H_1} f_{d1}\right)$$

Useful for modeling toxic metals

David Reckhow

CEE 577 #35

11

Homework #6 part I

- Chapra Lecture 40 problem: 40.1
 - Thomann and DiToro (1983) presented the following data related to the solids budget for the Western Basin of Lake Erie:
 - Volume = 23x109 m2
 - Area = $3030x10^6 \text{ m}^2$
 - Solid loading = 11.4x1012 g/yr
 - Suspended Solids = 20 mg/L
 - Flow = $167 \times 10^9 \, \text{m}^3/\text{yr}$
 - They assumed that the solids settle at a rate of 2.5 m/d (912.5 m/yr), and that he sediments have ρ =2.4 g/mL and ϕ -0.9. Determine the burial and resuspension velocities.

David Reckhow

CEE 577 #35

2

Homework #6 part II

- Chapra Lecture 40 problem: 40.2
 - Suppose that a toxic substance that is subject to volatilization ($v_v = 100 \text{ m/yr}$) is discharged to Lake Huron with an inflow concentration of 100 µg/L. In the absence of sediment feedback, determine the concentration for three cases: (a) weak sorber ($K_d = 0.002 \text{ m}^3/\text{g}$), (b) moderate sorber ($K_d = 0.1$), and (c) strong sorber ($K_d = 2$). Other necessary information should be taken from Examples 40.1 and 40.2.

David Reckhow

CEE 577 #35

13

Homework #6 part III

- Chapra Lecture 40 problem: 40.3a
 - A substance ($K_d = 0.02 \text{ m}^3/\text{d}$; M = 300) is discharged into a lake ($c_{in} = 100 \text{ µg/L}$) having the following characteristics:

$Volume = 1x10^6 \text{ m}^3$	Mean depth $= 5 \text{ m}$
Residence time = 1 year	Suspended solids = 10 mg/L
Settling velocity = 50 m/yr	Sediment deposition = 100 g/m ³ /yr
Sediment porosity = 0.85	Sediment density = 2.5 g/cm ³

- (a) It the resuspension is negligible, compute the steady-state concentration for three levels of volatilization:
 - (i) high soluble $(v_v = 0)$
 - (ii) moderately soluble ($v_v = 10 \text{ m/yr}$)
 - (iii) nearly insoluble ($v_v = 100 \text{ m/yr}$)

David Reckhow

CEE 577 #35

4

