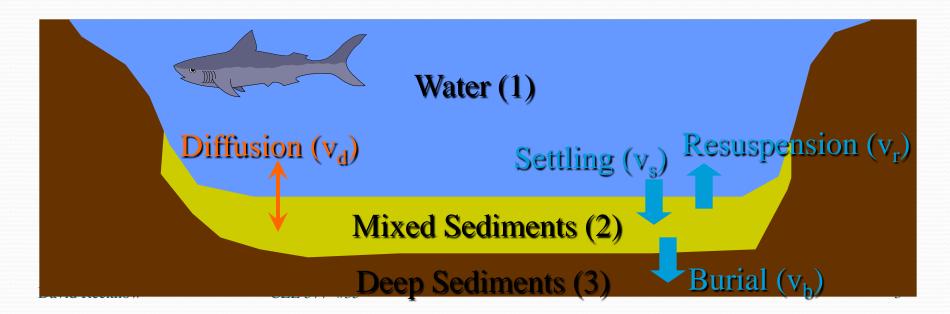


Updated: 17 April 2013

CEE 577: Surface Water Quality Modeling

Lecture #35 <u>Toxics</u>: Simplified Forms (Chapra, L42, L43 & L44)

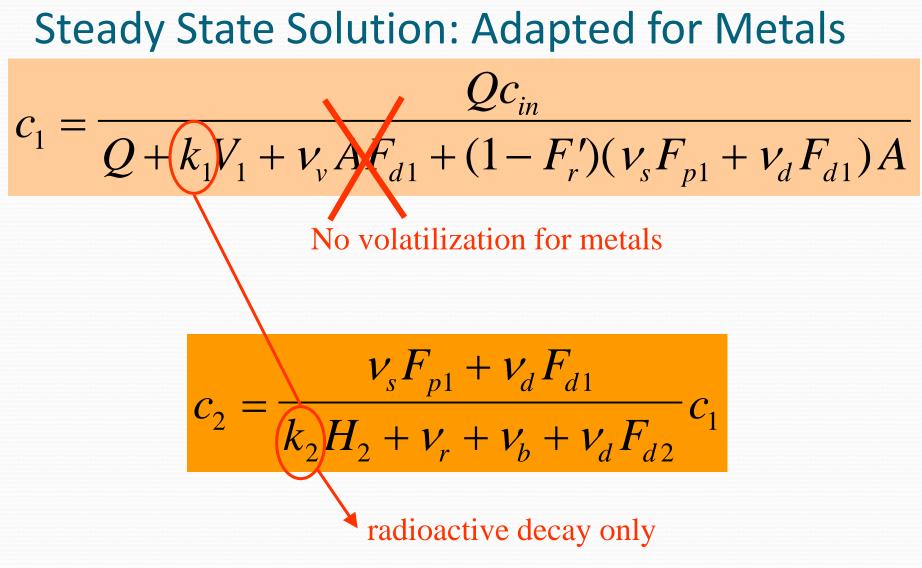
David Reckhow


1

Special Considerations for Metals

- In general they are not subject to decomposition
 - e.g., biodegradation, hydrolysis, photolysis
 - exception: radionuclides undergo radioactive decay
- Most do not volatilize (Hg is an exception)
- They speciate into may forms which differ in toxicity and behavior
- Natural background and non-point loadings may be quite high

Toxics Model: CSTR with sediments


- Internal Transport Processes (between compartments)
 - dissolved: diffusion
 - particulate: settling, resuspension & burial
- Expressed as velocities (e.g., m/yr)

Toxicant Mass Balance: Adapted for Metals

In the water column No volatilization for metals $V_1 \frac{dc_1}{dt} = W_T - Qc_1 + v_d A (f_{d2}c_2 - f_{d1}c_1) - k_{T1} V_1 c_1 - v_v A f_{d1} c_1 - v_s A f_{p1} c_1 + v_r A c_2$ In the mixed sediments $V_2 \frac{dc_2}{dt} = v_d A (f_{d1}c_1 - f_{d2}c_2) - k_{T2} V_2 c_2 + v_s A f_{p1}c_1 - v_r A c_2 - v_b A c_2$ radioactive decay only

David Reckhow

The ratio of sediment feedback to total sediment purging

$$F_{r}' = \frac{v_{r} + v_{d} F_{d2}}{v_{r} + v_{b} + v_{d} F_{d2} + k_{2} H_{2}}$$
radioactive decay only

Overview of solutions to toxic model

For Lakes:

$$C_{T1} = \frac{W}{\lambda V}$$
 Where: $\lambda = \frac{Q}{V} + K_{T1}$

For Rivers:

$$C_{T1} = C_{T1o} e^{-K_{T1} \frac{x}{U}}$$

$$\frac{W}{Q}$$

Solutions (cont.)

$$K_{T1} = k_1 + \frac{v_v}{H_1} f_{d1} + \left(1 - F_r'\right) \left(\frac{v_s}{H_1} f_{p1} + \frac{v_d}{H_1} f_{d1}\right)$$

Where:
$$F'_{r} = \frac{V_{r} + V_{d}F_{d2}}{V_{r} + V_{b} + V_{d}F_{d2} + k_{2}H_{2}}$$

The ratio of sediment feedback to total sediment purging

$$k_1 = k_{d1} f_{d1} + k_{p1} f_{p1}$$

$$k_2 = k_{d2} f_{d2} + k_{p2} f_{p2}$$

1

Toxicant Concentration in the Mixed Sediments

Either Lake or River Model:

$$c_{2} = \frac{v_{s}F_{p1} + v_{d}F_{d1}}{k_{2}H_{2} + v_{r} + v_{b} + v_{d}F_{d2}}c_{1}$$

Simplified Versions

- Level o
 - no movement from sediment to water column
 - $V_r = 0, V_d = 0$
 - therefore, $F'_r = o$

$$K_{T1} = k_1 + \frac{v_v}{H_1} f_{d1} + \frac{v_s}{H_1} f_{p1}$$

- Now c₂ has no effect on c₁ and we return to a one compartment model
 - all time-variable solutions can be applied

Simplified Versions (cont.)

- Level 1
 - no volatilization, no decomposition

•
$$v_v = o, k_1 = o, k_2 = o$$

()
 $K_{T1} = k_1 + \frac{v_v}{H_1} f_{d1} + (1 - F_r') \left(\frac{v_s}{H_1} f_{p1} + \frac{v_d}{H_1} f_{d1}\right)$

Useful for modeling toxic metals

Homework #6 part I

- Chapra Lecture 40 problem: 40.1
 - Thomann and DiToro (1983) presented the following data related to the solids budget for the Western Basin of Lake Erie:
 - Volume = 23x10⁹ m²
 - Area = $3030x10^6 \text{ m}^2$
 - Solid loading = 11.4×10^{12} g/yr
 - Suspended Solids = 20 mg/L
 - Flow = $167 \times 10^9 \text{ m}^3/\text{yr}$
 - They assumed that the solids settle at a rate of 2.5 m/d (912.5 m/yr), and that the sediments have ρ=2.4 g/mL and φ-0.9. Determine the burial and resuspension velocities.

Homework #6 part II

- Chapra Lecture 40 problem: 40.2
 - Suppose that a toxic substance that is subject to volatilization ($v_v = 100 \text{ m/yr}$) is discharged to Lake Huron with an inflow concentration of 100 µg/L. In the absence of sediment feedback, determine the concentration for three cases: (a) weak sorber ($K_d = 0.002 \text{ m}^3/\text{g}$), (b) moderate sorber ($K_d = 0.1$), and (c) strong sorber ($K_d = 2$). Other necessary information should be taken from Examples 40.1 and 40.2.

Homework #6 part III

- Chapra Lecture 40 problem: 40.3a
 - A substance ($K_d = 0.02 \text{ m}^3/\text{d}$; M = 300) is discharged into a lake ($c_{in} = 100 \text{ }\mu\text{g}/\text{L}$) having the following characteristics:

Volume = $1 \times 10^6 \text{ m}^3$	Mean depth = 5 m
Residence time = 1 year	Suspended solids = 10 mg/L
Settling velocity = 50 m/yr	Sediment deposition = $100 \text{ g/m}^3/\text{yr}$
Sediment porosity $= 0.85$	Sediment density = 2.5 g/cm^3

- (a) It the resuspension is negligible, compute the steady-state concentration for three levels of volatilization:
 - (i) high soluble $(v_v = o)$
 - (ii) moderately soluble ($v_v = 10 \text{ m/yr}$)
 - (iii) nearly insoluble ($v_v = 100 \text{ m/yr}$)

• <u>To next lecture</u>