

Biotransformation

- Microbially mediated transformation of organic and inorganic contaminants
- Biochemical processes:
 - Metabolism: toxicant is used for synthesis or energy
 - Cometabolism: not "used", but transformed anyway
- Chemical Effects:
 - Detoxication: Toxic to Non-toxic
 - mineralization
 - <u>Activation</u>: Non-toxic to Toxic

David Reckhow

CEE 577 #34

2

Bio kinetics

- Michaelis-Menten equation:
 - μ_{max}= maximum growth rate (yr⁻¹)
 - X=microbial biomass (#cells/m³)
 - Y= yield coefficient (cells produced per mass toxicant removed, #cells/μg)
 - k_s = half-saturation constant ($\mu g/m^3$)
 - k_b= rate of biotransformation (yr⁻¹)
- If c<<k_s, then:

$$k_b = \frac{\mu_{\text{max}} X}{Y k_s} = k_{b2} X$$

David Reckhow

CEE 577 #34

Bio kinetics (cont.)

- Wide environmental range
 - phenol: k_b=4.0 d⁻¹
 - diazinon: k_b=0.016 d⁻¹
- Temperature correction
 - θ=1.04-1.095

$$C_2H_5$$
 C_2H_5 C

$$(k_b)_T = (k_b)_{20} \theta^{T-20}$$

David Reckhow

CEE 577 #34

Hydrolysis

- Reaction with water and its constituents
 - H_2O $k_h = k_n$

$$k_h = k_n$$

• OH-
$$k_h = k_b [OH^-]$$

- H^+ $k_h = k_a [H^+]$
- Autodissociation

$$K_{w} = \left[OH^{-}\right]H^{+}$$

Combining:

$$k_h = k_b [OH^-] + k_n + k_a [H^+]$$

or:

$$k_{h} = k_{b} [OH^{-}] + k_{n} + k_{a} [H^{+}]$$

$$k_{h} = k_{b} \frac{K_{w}}{10^{-pH}} + k_{n} + k_{a} 10^{-pH}$$

David Reckhow

CEE 577 #34

Special Considerations for Metals

- In general they are not subject to decomposition
 - e.g., biodegradation, hydrolysis, photolysis
 - exception: radionuclides undergo radioactive decay
- Most do not volatilize (Hg is an exception)
- They speciate into may forms which differ in toxicity and behavior
- Natural background and non-point loadings may be quite high

David Reckhov

CEE 577 #34

