
CEE 577: Surface Water Quality Modeling

Lecture #34

<u>Toxics</u>: Hydrolysis and Biodegradation: Recapitulation and Simplified Forms

(Chapra, L42, L43 & L44)

Biotransformation

- Microbially mediated transformation of organic and inorganic contaminants
- Biochemical processes:
 - Metabolism: toxicant is used for synthesis or energy
 - <u>Cometabolism</u>: not "used", but transformed anyway
- Chemical Effects:
 - <u>Detoxication</u>: Toxic to Non-toxic
 - mineralization
 - Activation: Non-toxic to Toxic

Bio kinetics

- Michaelis-Menten equation:
 - μ_{max} = maximum growth rate (yr⁻¹)
 - X=microbial biomass (#cells/m³)
 - Y= yield coefficient (cells produced per mass toxicant removed, #cells/μg)
 - k_s = half-saturation constant ($\mu g/m^3$)
 - k_b= rate of biotransformation (yr⁻¹)
- If c<<k_s, then:

$$k_b = \frac{\mu_{\text{max}} X}{Y k_s} = k_{b2} X$$

 $k_b = \frac{\mu_{\text{max}} X}{Y(k_s + c)}$

Bio kinetics (cont.)

- Wide environmental range
 - phenol: k_b=4.0 d⁻¹
 - diazinon: $k_b = 0.016 d^{-1}$
- Temperature correction
 - θ=1.04-1.095

$$C_2H_5$$
 O C_2H_5 C_2H_5 C_2H_5 C_2H_3 C_2H_3 C_2H_3

$$(k_b)_T = (k_b)_{20} \theta^{T-20}$$

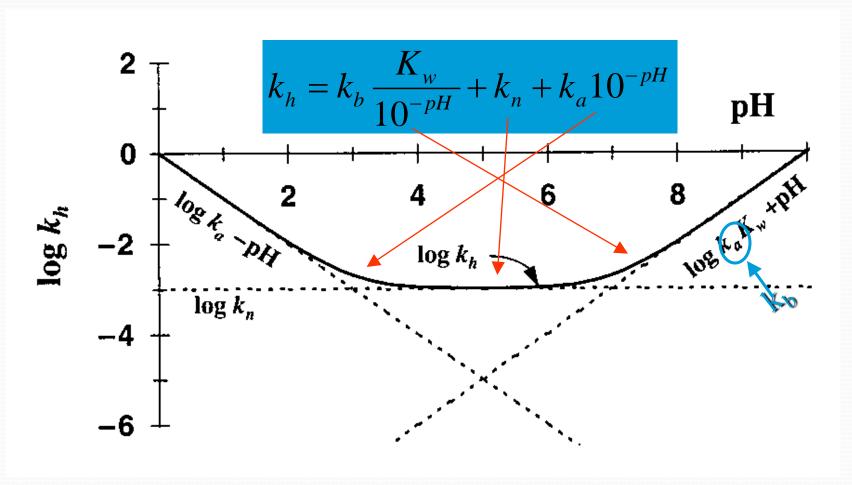
Hydrolysis

Reaction with water and its constituents

•
$$H_2O$$
 $k_h = k_n$

$$\bullet OH^- \qquad k_h = k_b [OH^-]$$

• H⁺
$$k_h = k_a [H^+]$$


Autodissociation

$$K_{w} = [OH^{-}]H^{+}$$

• Combining: $k_h = k_b [OH^-] + k_n + k_a [H^+]$

$$k_h = k_b \frac{K_w}{10^{-pH}} + k_n + k_a 10^{-pH}$$

Graphic Representation

Special Considerations for Metals

- In general they are not subject to decomposition
 - e.g., biodegradation, hydrolysis, photolysis
 - exception: radionuclides undergo radioactive decay
- Most do not volatilize (Hg is an exception)
- They speciate into may forms which differ in toxicity and behavior
- Natural background and non-point loadings may be quite high

• To next lecture