

TOXICS: What makes them unique?

- Sorption properties
 - they are hydrophobic
 - they tend to bind strongly to particles
 - · some volatilize
 - Concern about particulate fraction
- Biological interactions
 - they concentrate up the food chain
 - they are toxic
- They are not natural

David Reckhow

CEE 577 #28

Langmuir Isotherm

- At Equilibrium
 - Rate of adsorption = rate of desorption

$$R_{ad} = R_{de}$$

$$k_{ad} M_s c_d (v_m - v) = k_{de} M_s v$$

• So, solving for the sorbed concentration (v)

$$v = \frac{V_m c_d}{\frac{k_{de}}{k_{ad}} + c_d}$$

David Reckhow

CEE 577 #28

Limiting Cases

- When C_d is small, and there are lots of surface sites
 - Common situation for "toxics"

$$v = \frac{v_m c_d}{\frac{k_{de}}{k_{ad}} + c_d} \approx \frac{v_m c_d}{\frac{k_{de}}{k_{ad}}} = \frac{v_m k_{ad}}{k_{de}} c_d$$

$$v = K_d c_d$$

• So the bulk particulate concentration is: $c_p = m \, v = m K_d c_d$

$$c_p = m v = m K_d c_d$$

And the total toxicant is:

$$c_T = c_d + c_p = c_d + mK_d c_d$$

David Reckhow

CEE 577 #28

3

Solids: Mass Balance

Can be expressed as: Qm_{in}

In water column

$$V_{1} \frac{dm_{1}}{dt} = W_{m} - Qm_{1} - v_{s}Am_{1} + v_{r}Am_{2}$$

in mixed sediments

$$V_2 \frac{dm_2}{dt} = v_s A m_1 - v_r A m_2 - v_b A m_2$$

David Reckhow

CEE 577 #28

Solids: Steady State Solution

• Fixed ratio of solids concentration in water column and mixed sediments

$$m_2 (= (1 - \phi)\rho) = \frac{v_s}{v_r + v_b} m_1$$

David Reckhow

CEE 577 #28

Toxicant Mass Balance

New Chapra approach

• In the water column

Can be expressed as: Qc_{in}

$$V_{1}\frac{dc_{1}}{dt} = W_{T} - Qc_{1} + v_{d}A(f_{d2}c_{2} - f_{d1}c_{1}) - k_{T1}V_{1}c_{1} - v_{v}Af_{d1}c_{1} - v_{s}Af_{p1}c_{1} + v_{r}Ac_{2}$$

• In the mixed sediments

$$V_2 \frac{dc_2}{dt} = v_d A (f_{d1}c_1 - f_{d2}c_2) - k_{T2}V_2c_2 + v_s A f_{p1}c_1 - v_r A c_2 - v_b A c_2$$

David Reckhow

CEE 577 #28

11

• To next lecture

David Reckhow

CEE 577 #28