Lecture #28
Toxics: Lake Models
(Chapra, L40)
TOXICS: What Are They?

- **Metals**
 - Hg, Se, Cd, Pb
- **Industrial Synthetic Organics**
 - Plasticizers: phthalates
 - solvents: tetrachloroethylene
 - waxes: chlorinated paraffins
 - others: PCB’s
- **Hydrocarbons & oil derivatives**
 - includes products of combustion: PAH’s
- **Agricultural Chemicals**
 - pesticides: DDT, kepone, mirex
- **Pharmaceuticals, etc**
 - Anti-epileptics
 - Beta-blockers
 - X-ray contrast media
 - antibiotics
- **Personal Care Products**
 - triclosan
 - musks
- **Endocrine Disrupters**
 - Steroidal estrogens
- **Radioactive Substances**
 - ^{90}Sr, Pu, Cs
TOXICS: What makes them unique?

- Sorption properties
 - they are hydrophobic
 - they tend to bind strongly to particles
 - some volatilize
 - Concern about particulate fraction
- Biological interactions
 - they concentrate up the food chain
 - they are toxic
- They are not natural
Sorption

- Definitions

\[c_d' \equiv \text{dissolved toxicant} \]
\[c_p \equiv \text{particulate toxicant} \]

and:
\[c_d = \phi c_d' \]

so:
\[c_T = c_p + c_d \]
Langmuir Isotherm

- At Equilibrium
 - Rate of adsorption = rate of desorption
 \[R_{ad} = R_{de} \]
 \[k_{ad} M_s c_d (v_m - v) = k_{de} M_s v \]
 - So, solving for the sorbed concentration \((v)\)
 \[v = \frac{v_m c_d}{\frac{k_{de}}{k_{ad}} + c_d} \]
Limiting Cases

- When C_d is small, and there are lots of surface sites
 - Common situation for “toxics”

\[
\nu = \frac{\nu_m C_d}{k_{de}} + C_d \approx \frac{\nu_m C_d}{k_{de}} = \nu_m k_{ad} C_d
\]

\[
\nu = K_d C_d
\]

- So the bulk particulate concentration is:

\[
c_p = m \nu = m K_d C_d
\]

- And the total toxicant is:

\[
c_T = C_d + c_p = C_d + m K_d C_d
\]
Toxics: Linear sorption modeling

• Now define

\[f_d = \frac{c_d}{c_T} = \frac{c_d}{c_d + mK_d c_d} \]

• adsorption model

\[f_d = \frac{1}{1 + K_d m} \]
\[f_p = \frac{K_d m}{1 + K_d m} \]

\[c_d = f_d c_T \]
\[c_p = f_p c_T \]

\[f_d + f_p = 1 \]
Toxics Model: CSTR with sediments

- Internal Transport Processes (between compartments)
 - dissolved: diffusion
 - particulate: settling, resuspension & burial
- Expressed as velocities (e.g., m/yr)
Solids: Mass Balance

- In water column

\[V_1 \frac{dm_1}{dt} = W_m - Qm_1 - \nu_s A_{m_1} + \nu_r A_{m_2} \]

- in mixed sediments

\[V_2 \frac{dm_2}{dt} = \nu_s A_{m_1} - \nu_r A_{m_2} - \nu_b A_{m_2} \]

Can be expressed as: \(Q_{m_{in}} \)
Solids: Steady State Solution

- Fixed ratio of solids concentration in water column and mixed sediments

\[m_2 \left(= (1 - \phi) \rho \right) = \frac{v_s}{v_r + v_b} m_1 \]

\(m_2 \) is the mass of solids in the water column, \(m_1 \) is the mass of mixed sediments, \(\rho \) is the density of solids, and \(\phi \) is the porosity.
Toxicant Mass Balance

In the water column

\[V_1 \frac{dc_1}{dt} = W_T - Qc_1 + v_d A \left(f_{d2} c_2 - f_{d1} c_1 \right) - k_{T1} V_1 c_1 - v_v A f_{d1} c_1 - v_s A f_{p1} c_1 + v_r A c_2 \]

Can be expressed as: \(Qc_{\text{in}} \)

New Chapra approach

In the mixed sediments

\[V_2 \frac{dc_2}{dt} = v_d A \left(f_{d1} c_1 - f_{d2} c_2 \right) - k_{T2} V_2 c_2 + v_s A f_{p1} c_1 - v_r A c_2 - v_b A c_2 \]
To next lecture