Updated: 16 April 2013

CEE 577: Surface Water Quality Modeling

Lecture #28 <u>Toxics</u>: Lake Models (Chapra, L40)

David Reckhow

TOXICS: What Are They?

- Metals
 - Hg, Se, Cd, Pb
- Industrial Synthetic Organics
 - Plasticizers: phthalates
 - solvents: tetrachloroethylene
 - waxes: chlorinated parafins
 - others: PCB's
- Hydrocarbons & oil derivatives
 - includes products of combustion: PAH's
- Agricultural Chemicals
 - pesticides: DDT, kepone, mirex

- Pharmaceuticals, etc
 - Anti-epileptics
 - Beta-blockers
 - X-ray contrast media
 - antibiotics
- Personal Care Products
 - triclosan
 - musks
- Endocrine Disrupters
 - Steroidal estrogens
- Radioactive Substances
 - ⁹⁰Sr, Pu, Cs

TOXICS: What makes them unique?

- Sorption properties
 - they are hydrophobic
 - they tend to bind strongly to particles
 - some volatilize
 - Concern about particulate fraction
- Biological interactions
 - they concentrate up the food chain
 - they are toxic
- They are not natural

Sorption

Definitions

 $c_d \equiv \text{dissolved toxicant}$ $c_p \equiv \text{particulate toxicant}$ and: $c_d = \phi c_d'$ SO: $c_T = c_p + c_d$

David Reckhow

CEE 577 #28

Langmuir Isotherm

- At Equilibrium
 - Rate of adsorption = rate of desorption

$$R_{ad} = R_{de}$$
$$k_{ad} M_s c_d (v_m - v) = k_{de} M_s v$$

• So, solving for the sorbed concentration (v)

$$\nu = \frac{V_m C_d}{\frac{k_{de}}{k_{ad}} + C_d}$$

Limiting Cases

- When C_d is small, and there are lots of surface sites
 - Common situation for "toxics"

$$v = \frac{V_m C_d}{\frac{k_{de}}{k_{ad}} + C_d} \approx \frac{V_m C_d}{\frac{k_{de}}{k_{ad}}} = \frac{V_m k_{ad}}{k_{de}} C_d$$
$$v = K_d C_d$$

- So the bulk particulate concentration is: $c_p = mv = mK_dc_d$
- And the total toxicant is:

$$c_T = c_d + c_p = c_d + mK_dc_d$$

Toxics: Linear sorption modeling

Now define

$$c_d = f_d c_T$$

 $c_p = f_p c_T$

$$f_d + f_p = 1$$

David Reckhow

CEE 577 #28

Toxics Model: CSTR with sediments

- Internal Transport Processes (between compartments)
 - dissolved: diffusion
 - particulate: settling, resuspension & burial
- Expressed as velocities (e.g., m/yr)

Solids: Mass Balance

Can be expressed as: Qm_{in}

In water column

$$W_1 \frac{dm_1}{dt} = W_m - Qm_1 - v_s Am_1 + v_r Am_2$$

in mixed sediments

$$V_2 \frac{dm_2}{dt} = v_s Am_1 - v_r Am_2 - v_b Am_2$$

Solids: Steady State Solution

 Fixed ratio of solids concentration in water column and mixed sediments

$$m_2(=(1-\phi)\rho) = \frac{v_s}{v_r + v_b}m_1$$

$$V_2 \frac{dc_2}{dt} = v_d A (f_{d1}c_1 - f_{d2}c_2) - k_{T2}V_2c_2 + v_s A f_{p1}c_1 - v_r A c_2 - v_b A c_2$$

• <u>To next lecture</u>