

-1	AKE MANAS	
	anc ivialia	gement
	Technique	Notes
1	Dredging	removal of sediments
2	Macrophyte Harvesting	mechanical removal of plants
3	Biocidal Chemical Treatment	chemicals added to inhibit growth of undesirable plants
4	Water Level Control	flooding or drying of troublesome areas to control growths
5	Hypolimnetic Aeration or Destratification	addition of oxygen, and mixing
6	Hypolimnetic Withdrawal	removal of bottom waters low in oxygen and high in nutrients
7	Bottom Sealing/Sediment Treatment	obstruction of the bottom by physical or chemical means
8	Nitrient Inactivation	chemical precipitation or complexation of dissolved phosphorus, nitrogen, etc.
9	Dilution and Flushing	increase flow to help "flush out" pollutants
10		encouragement of biological interactions to
	Management	alter ecosystem processes

Watershed Management						
	Technique	Notes				
	1 Zoning/Land Use Planning	Management of land use				
	2 Stormwater/Wastewater Diversion	re-routing of wastewater flows				
	3 Detention Basin Use and Maintenance	increase time of travel for polluted waters so natural purification processes act				
	4 Sanitary Sewers	installation of community-level collection syst				
	5 Maintenance and Upgrade of On- site Treatment Systems	better operation & performance of home septi systems, etc.				
	6 Agricultural Best Management Practices	use of improved techniques in forestry, anima crop science				
	7 Bank and slope stabilization	erosion control to reduce sediment and associal loadings				
	8 Increased street sweeping	frequent washing and removal of urban runof contaminants				
	9 Behavioral Modifications					
	a. use of Non-phosphate detergents	eliminates source of P				
	b. eliminate garbage grinders	reduces general organic loading				
	c. minimize lawn fertilization	reduces nutrient loading				
	d. restrict motorboat activity	reduce turbulence and sediment resuspension				
	e. eliminate illegal dumping	reduce a wide range of conventional and toxic				
David Reckhow		inputs				

Lake Morphometry

• Properties of Wachusett Reservoir & Forge Pond

Property	Symbol	Units	Wachusett	Forge Pond
Volume	V	m^3	$2.5x10^8$	$3.33x10^5$
Lake Surface	SA	km ²	15.8	0.303
Area				
Watershed Area	DA	km ²	295	37.7
Length	L	km	13.7	1.8
Length of	Ls	km	59	5.94
Shoreline				
Maximum Width	W	km	1.8	0.45
Mean Width	W	km	1.2	0.12
Maximum Depth	$Z_{\rm m}$	m	39	2.2
Mean Depth	Z	m	15.6	0.9
Total Outflow	Q	m^3/s	16	0.5

David Reckhow

CEE 577 #26

Order of Magnitude Estimates

• Residence Time

Wachsett

Forge Pond

T=V/Q

- if T<100 d, stronger longitudinal gradients, greater productivity
 - partly result of greater sediment and nutrient loads
- Drainage Area/ Lake Surface Area Ratio

18.7

125

Watershed/Lake Area Ratio	Management Approach
< 10	In-lake measures may work by themselves.
10-50	In-lake measures are difficult, but may still work. Watershed management may be needed.
> 50	In-lake measures are infeasible, watershed

0

Order of Magnitude Estimates (cont.)

- Aspect Ratio
 - AR=L/W

11.4

15

- <4, lateral gradients dominate
 - use 2-d models?
- >4, longitudinal gradients dominate
 - use 1-d or CSTR models
- Shoreline Development Ratio
 - SDR

 $=\frac{L_s}{2\sqrt{\pi SA}}$

4.2

3.0

- a measure of how dendritic a lake is, indicates potential for littoral productivity
 - =1 for a perfectly circular lake
 - =15 for a highly dendritic lake

David Reckhow

CEE 577 #26

11

Order of Magnitude Estimates (cont.)

- Relative Depth
 - RD= $50Z_m \sqrt{\pi/SA}$

0.9

0.35

- comparison between depth and surface area. As ratio gets smaller there is a greater potential for wind to disrupt thermal stratification
- Areal Erosion
 - AR=

David Reckhov

CEE 577 #26

12

Chemical Assessment

- N/P Ratio
 - Nitrogen limited: <13:1
- $0.714/0.113 \sim 6/1$
 - Algal cells ~ 16:1
 - Phosphorus limited >20:1

David Reckhow CEE 577 #26

• To next lecture David Reckhow CEE 577 #26