Thermal Pollution

- Concerns
 - direct lethal effects on sensitive plants or animals
 - indirect effects on aquatic ecosystems through effects on the kinetics of biological, physical or chemical processes

- Principal Sources
 - Point sources
 - electric power generating stations (Major)
 - municipal & industrial WWTP’s (minor)
 - Non-point Sources
 - long wave atmospheric radiation (H_a)
 - Short wave solar radiation (H_s)
Temperature or Heat Modeling

- Mass Balance is written based on thermal energy
 \[\frac{\partial c}{\partial t} = -\frac{1}{A} \frac{\partial (Qc)}{\partial x} + E \frac{\partial^2 c}{\partial x^2} + k c + \frac{H_N}{z} \]
 Each term is in: BTU/m³/d
 - and we relate this to temperature by: \(c = \rho c_H (T - T_o) \)
 - \(\rho = \) density of water (g/m³)
 - \(c_H = \) heat capacity of water (BTU/g/°C)
 - \(T_o = \) arbitrary “frame of reference” temperature (°C)
 - Substituting in we get:
 \[\frac{\partial T}{\partial t} = -\frac{1}{A} \frac{\partial (QT)}{\partial x} + E \frac{\partial^2 T}{\partial x^2} + \frac{H_N}{\rho c_H z} \]

Heat Modeling (cont.)

- Determination of \(H_N \)
 - Refer to:
 - Also some treatment in Chapra
 - (Lecture 30)
Total Surface Heat Flux

- Chapra
- Fig 30.3
Numerical Solutions (QUAL2E)

- The problem
 - need to develop numerical estimates for the first and second derivatives of concentration versus distance

\[\frac{\partial c}{\partial t} = -U \frac{\partial c}{\partial x} + E \frac{\partial^2 c}{\partial x^2} \]

- The solution
 - Finite Difference

Finite Difference

- Euler-Cauchy Approach
 - Forward Difference
 \[\frac{\partial c}{\partial x}_i \approx \frac{c_{i+1} - c_i}{\Delta x} \]
 - Backward Difference
 \[\frac{\partial c}{\partial x}_i \approx \frac{c_i - c_{i-1}}{\Delta x} \]
 - Central or Centered Difference
 \[\frac{\partial c}{\partial x}_i \approx \frac{c_{i+1} - c_{i-1}}{2\Delta x} \]

But less stable
Finite Difference (cont.)

- Formulation: Explicit
 - backward difference
 - forward difference
 - Gives centered difference

\[
\frac{\partial^2 c}{\partial x^2} \approx \frac{\partial c}{\partial x} \bigg|_i - \frac{\partial c}{\partial x} \bigg|_{i-1} \Delta x
\]

\[
\frac{(c_{i+1} - c_i) \Delta x - (c_i - c_{i-1}) \Delta x}{\Delta x^2} \approx \frac{c_{i+1} - 2c_i + c_{i-1}}{\Delta x^2}
\]

The Explicit Approach

- The differential equation:
 \[
 \frac{\partial c}{\partial t} = -U \frac{\partial c}{\partial x} + E \frac{\partial^2 c}{\partial x^2}
 \]

- Becomes:
 \[
 \frac{c_{i+1}^n - c_i^n}{\Delta t} = -U \frac{c_{i+1}^n - c_{i-1}^n}{2 \Delta x} + E \frac{c_{i+1}^n - 2c_i^n + c_{i-1}^n}{\Delta x^2}
 \]

- And rearranging:
 \[
 c_{i+1}^{n+1} = c_i^n + \left(-U \frac{c_{i+1}^n - c_{i-1}^n}{2 \Delta x} + E \frac{c_{i+1}^n - 2c_i^n + c_{i-1}^n}{\Delta x^2} \right) \Delta t
 \]
The QUAL2E approach

- Classical Implicit Backwards Difference

\[c_i^{n+1} = c_i^n + \left(-U \frac{c_i^{n+1} - c_{i-1}^{n+1}}{\Delta x} + E \frac{c_{i+1}^{n+1} - 2c_i^{n+1} + c_{i-1}^{n+1}}{\Delta x^2} + kc_i^{n+1} + z_i \right) \Delta t \]

- \(k \) is the rate constant for all internal processes and reactions (e.g., biodegradation)
- \(z_i \) is the sum of all internal sources and sinks
 - e.g., SOD
- Solved using matrix subroutines

To next lecture