CEE 577: Surface Water Quality Modeling

Lecture #16

Streeter-Phelps: Reaeration & Dams

(Chapra, L22 & L23)

Streeter Phelps Equation

$$V \frac{dD}{dt} = k_d V L - k_a V D$$

$$L = L_o e^{-k_d t}$$

This equation can be solved by separation of variables and integration, or by use of an integrating factor. The boundary condition is t = 0 @ $D = D_o$. This yields the DO sag

$$D = D_o e^{-k_a t} + \frac{k_d L_o}{k_a - k_r} \left(e^{-k_r t} - e^{-k_a t} \right)$$

where

$$D = \text{stream deficit at time t, [mg/L]}$$

 $D_0 = \text{initial oxygen deficit (@ t = 0), [mg/L]}$

And recognizing that: t=x/U

$$D = D_o e^{-k_a x/U} + \frac{k_d L_o}{k_a - k_r} \left(e^{-k_r x/U} - e^{-k_a x/U} \right)$$

Anaerobic Conditions?

Critical Time

 The most stress is placed on the aquatic life in a stream when the DO is at a minimum, or the deficit, D, is a maximum. This occurs when dD/dt = 0. We can obtain the time at which the deficit is a maximum by taking the derivative of the DO sag equation with respect to t and setting it equal to zero, then solving for t. This yields,

$$t_{crit} = \frac{1}{k_a - k_r} \ln \left[\frac{k_a}{k_r} \left(1 - \frac{D_o(k_a - k_r)}{k_d L_o} \right) \right]$$

 t_{crit} = time at which maximum deficit (minimum DO) occurs, [days]

Special Case for D and t_c

When k_a and k_r are equal:

$$t_c = \frac{1}{k_r} \left(1 - \frac{D_0}{L_o} \right)$$

$$D = (L_o k_r t + D_o) e^{-k_r t}$$

From Davis & Masten, page 290-291

Critical concentration

• Once the critical time is known, you can calculate the c_{min}

$$c_{\min} = c_s - L_o \frac{k_d}{k_a} e^{-k_r t_{crit}}$$

 this is an abbreviated form of the full equation, which is only valid for t_{crit}

This differs from Chapra's equation 21.14 on page 397, Why?????

Estimating Reaeration Rates (d⁻¹) (U in ft/s; H in ft)

- O'Connor-Dobbins formula
 - based on theory
 - verified with some deep waters
- Churchill formula
 - Tennessee Valley
 - deep, fast moving streams
- Owens formula
 - British
 - shallow streams

$$k_a = 12.9 \frac{U^{0.5}}{H^{1.5}}$$

$$k_a = 11.6 \frac{U}{H^{1.67}}$$

$$k_a = 21.6 \frac{U^{0.67}}{H^{1.85}}$$

The method of Covar (1976)

Values for k_a are in units of d^{-1}

Using the Covar approach

Determine proper Domain

H (ft)	U (ft/s)	Formula
<2	Any	Owens
>2	<1.2H ^{0.34}	O'Connor- Dobbins
>2	>1.2H ^{0.34}	Churchill

More on k_a estimation

- Tsivoglou & Wallace (1972) method
 - $k_a = 0.88US$, for Q = 10-300 cfs
 - $k_a = 1.8US$, for Q = 1-10 cfs
- Temperature correction
 - $\theta = 1.024$

$$k_T = k_{20^{\circ} C} \theta^{T-20^{\circ} C}$$

Dam Reaeration

• Butts and Evans (1983):

Temperature (°C)

Ratio of deficit above and below the dam

Empirical coefficients which relate to water quality and dam type (Table 20.2)

Difference in water elevation

Wind dependent reaeration formulas

• To next lecture