Updated: 23 October 2017

CEE 577: Surface Water Quality Modeling

Lecture #13 BOD and Deoxygenation (Chapra, L20)

BOD Modeling

"L" is modelled as a simple 1st order decay:

$$\frac{dL}{dt} = -k_1 L$$

Which leads to:

$$L = L_o e^{-k_1 t}$$

And combining with:

$$BOD_t \equiv y_t = L_o - L_t$$

$$BOD_t \equiv y_t = L_o(1 - e^{-k_1 t})$$

Temperature Effects

Temperature Dependence

Chemist's Approach: Arrhenius Equation

 $\frac{d(\ln k)}{dT_a} = \frac{E_a}{RT_a^2}$

$$k_{T_a} = k_{293^o K} e^{E_a (T_a - 293)/RT_a 293}$$

• Engineer's Approach:

$$k_T = k_{20^{\circ}C} \theta^{T-20^{\circ}C}$$

Often we use: $\theta = 1.047$ for CBOD

NBOD

Nitrogeneous BOD (NBOD)

 $NH_{3} + 1.5O_{2} \xrightarrow{Nitrosomonas} NO_{2}^{-} + H_{2}O + H^{+}$ $NO_{2}^{-} + \frac{1}{2}O_{2} \xrightarrow{Nitrobacter} NO_{3}^{-}$

2 moles oxygen/1 mole of ammonia 4.57 grams oxygen/gram ammonia-nitrogen

Like CBOD, the NBOD can be modelled as a simple 1st order decay:

$$\int_{57} \frac{dL^N}{dt} = -k_N L^N$$

Dave Reckhow (UMass)

CEE

NBOD cont.

• The model is then:

$$NBOD_t = L_o^N \left(1 - e^{-k_N t} \right)$$

• where:

$$L_o^N \equiv NBOD_u = 4.57(org - N + NH_3 - N)$$

- Nitrifiers
 - very slow generation time (~1 day)
 - sensitive to low D.O.
- NBOD may be very important for non-nitrified, but otherwise highly treated waters

Typical Municipal WW Charact.

Parameter	Typical Wastewater Characteristics, mg/L except pH	U.S. EPA Discharge Standards, mg/L except pH	Typical Concentrations in Lakes or Streams, mg/L except pH
BOD₅	150-300	30	2-10
Total Suspended Solids	150-300	30	2-20
COD	400-600	N/A	5-50
D.O.	0	4-5	4-Sat.
NH₃-N	15-40	*	<1
NO <u>3</u>	0	*	<1
рН	6-8	6-9	6-8

Estimating the k's

$$\begin{split} k_d &= C \bigg(\frac{H}{8} \bigg)^{-0.434}, \quad 0 \leq H \leq 8 ft \\ k_d &= C \quad , \qquad \qquad H > 8 ft \end{split}$$

Where: C=0.2 for unstable bottoms C=0.3 for rocky bottoms

Distance Downstream (miles)

CEE 577: Surface Water Quality Modeling

Print version

Lecture #22 (Distributed Systems, time variable. Dye Studies) Chapra, L10

Plug Flow (time variable)

Simulating accidental spill, tracer studies

$$\frac{\partial c}{\partial t} = -U\frac{\partial c}{\partial x} - kc$$

 when a spill causes a concentration of c_o at x=o and t=o

$$c = c_o e^{-kt^*}$$
 Where: $t^* = x/U$

Refer to Example 10.1

Moving vs. Fixed frame of reference

The random walk: a normal distribution

David Reck

Spill Models

 $\overline{x} = Ut$ $\sigma = \sqrt{2Et}$

Recall from our discussion on Longitudinal Dispersion (~Lecture #9)

Where the Shear Velocity is:

$$U^* = \sqrt{gHS}$$

Empirical Method

- From Dye Study data
 - Method of moments

$$E_x = \frac{U^2}{2} \frac{\sigma_{td}^2 - \sigma_{tu}^2}{\overline{t_d} - \overline{t_u}}$$

$$\sigma_{l} = \sqrt{2E_{x}t}$$

$$E_{x} = \frac{\sigma_{l}^{2}}{2t} = \frac{U^{2}}{2} \frac{\sigma_{t}^{2}}{t}$$

$$= \frac{U^{2}}{2} \frac{\Delta \sigma_{t}^{2}}{\Delta t}$$

Over length, at a single time

Over time, at a specific location

- σ^2 = variance of the concentration-time curve
- t-bar = time of travel to the centroid of the curve
- The first moment about the origin gives:
 - where t_{0.01} is the time at which concentration has decreases to 1% of the peak

Empirical Method (cont.)

• And the 2nd moment about the centroid gives:

$$\sigma^{2} = \frac{\int_{t_{0.01}}^{t_{0.01}} st^{2} dt}{\int_{t_{0.01}}^{t_{0.01}} sdt} - (\bar{t})^{2}$$

• For discrete data these become:

$$\bar{t} = \frac{\sum st^{\Delta}t}{\sum s^{\Delta}t} = \frac{\sum st}{\sum s}$$

$$\sigma^{2} = \frac{\sum st^{2\Delta}t}{\sum s^{\Delta}t} - (\bar{t})^{2} = \frac{\sum st^{2}}{\sum s} - (\bar{t})^{2}$$

Compare to T&M equ 10.32

Compare to T&M equ 10.33

David Reckhow

CEE 577 #22

Dye Studies (cont.)

- Single point method
 - Use of peak concentration (c_p) and time to reach peak (t_p)

$$c_p = \frac{M}{2A\sqrt{\pi E_x}} (t_p)^{-0.5}$$

- plot $c_p vs(t_p)^{-0.5}$ to get a slope that is a function of E_x
- see sample problem 2.6 in T&M (pg. 78)

Homework #4

Velocitydispersion coefficient

10 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS												
TIME-OF-TRAVEL STUDY ON Millers River												
SAMPLING SITE Millers Falls						Paper Co. Bridge (RM 2.1)						
Dye injected at <u>Furley Bridge (Rm 5.9)</u> Time 9:55								55	_Dat	e <u>77/</u> 1	5 87	
Sampling section discharge 229 cfs; width main man depth												
Field Sampling and Analysis Final Laboratory Analysis												
Sample Samp No. Point	Sample	mple Sample bint Time	Fluorometer Readings		Fluorometer Readings				Dye			
	Point		1X	3X	10X	30X	1X	ЗX	10X	30X	Conc. (μg/L)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
]		1030			24				-			
2		1045			24							
3		1100			24							
4		1115			27							
5		1130			40							
6		1145			39							
7		1200			41							
ଞ		1215			28							
9		1230			29							
10		1245		13	43							
11		1300		29								
12		1315	20	60								
13		1330	32									
14		1345		18								
15		1400		16	53							
16		1415			42					Ì		
17		1430			28							
18+19		1445			26							
20		1500			24							

David Reckhow

CEE 577

IVDIU

USGS Guidelines: Input

• The USGS recommends the following volume or mass of Rhodamine WT-20% dye:

USGS Guidelines: Sampling

 Duration of dye cloud as a function of travel time to peak, and average channel width-depth ratio (B/H).

David Reckhow

• <u>To next lecture</u>