

Dissolved Oxygen (D.O.)

Oxygen is a rather insoluble gas, and as a result its is often the limiting constituent in the purification of wastes and natural waters. Its solubility ranges from 14.6 mg/l at 0°C to about 7 mg/l at 35°C. In addition to temperature, its solubility varies with barometric pressure and salinity. The saturation concentration of oxygen in distilled water may be calculated from the following empirical expression:

Dave Reckhow (UMass)

CEE 577 #12

DO saturation formula

where:

P_{vw} = water vapor partial pressure (atm)

= $11.8571 - (3840.70/T_k) + (216,961/T_k^2)$

P = total atmospheric (barometric) pressure (atm), which may be read directly or calculated from a remote reading at the same time from:

 $= P_o - (0.02667)\Delta H/760$

 ΔH = Difference in elevation from the location of interest (at

 $_{\text{Dave Reckhow (UMass)}}$ P) to the reference location (at $P_{o})$ in feet.

1

DO (cont.)

P_o = Simultaneous barometric pressure at a nearby reference location

 θ = pressure/temperature interactive term

= $0.000975 - (1.426x10^{-5}T) + (6.436x10^{-8}T^{2})$

T = Temperature in degrees centigrade

C_{s1} = Saturation concentration of oxygen in distilled water at 1 atmosphere total pressure.

 $\ln(C_{s1}) = -139.34411 + (1.575701x10^{5}/T_{k}) - (6.642308x10^{7}/T_{k}^{2}) + (1.243800x10^{10}/T_{k}^{3}) - (8.621949x10^{11}/T_{k}^{4}).$

 T_k = Temperature in degrees Kelvin (T_k = T + 273.15)

Dave Reckhow (UMass)

CEE 577 #12

DO (cont.)

 Minimum concentration is required for the survival of higher aquatic life

- larval stages of certain cold-water fishes are quite sensitive
- Significant discharges of organic wastes may depress the D.O. concentrations in receiving waters
 - microbially-mediated oxidation
 - each state has established ambient dissolved oxygen standards
- Another use of D.O. is the assessment of oxidation state in groundwaters and sediments

Dave Reckhow (UMass)

CEE 577 #12

9

DO (cont.)

- also a very important parameter in biological treatment processes
 - indicate when aerobic and anaerobic organisms will predominate
 - used to assess the adequacy of oxygen transfer systems
 - indicate the suitability for the growth of such sensitive organisms such as the nitrifying bacteria.
- used in the assessment of the strength of a wastewater through either the Biochemical Oxygen Demand (BOD) or respirometric studies.

Dave Reckhow (UMass)

CEE 577 #12

0

Dissolved Oxygen

Solutions

- reduction of BOD by biological WW treatment
- nutrient control

Ambient Water Quality Criteria

- established by EPA in "Gold Book"
- dependent on type of fish, averaging period

Ambient Water Quality Standards [enforceable]

- established by states, and other local agencies
- dependent on use classification

Dave Reckhow (UMass)

CEE 577 #12

11

Oxygen Demand

- It is a measure of the amount of "reduced" organic and inorganic matter in a water
- Relates to oxygen consumption in a river or lake as a result of a pollution discharge
- Measured in several ways
 - BOD Biochemical Oxygen Demand
 - COD Chemical Oxygen Demand
 - ThOD Theoretical Oxygen Demand

Dave Reckhow (UMass)

CEE 577 #12

2

