CEE 577: Surface Water Quality Modeling

Lecture #10 (Rivers & Streams, cont)

Chapra, L14 (cont.)

Longitudinal Dispersion

Where the Shear Velocity is:

$$U^* = \sqrt{gHS}$$

Lateral Mixing

 Lateral or transverse dispersion coefficient for a stream:

Mean depth

$$E_{lat} = 0.6HU^*$$
 Shear velocity

Length required for complete mixing:

Side discharge:

$$L_m = 0.40U \frac{B^2}{E_{lat}}$$

Center discharge:

$$L_m = 0.10U \frac{B^2}{E_{lat}}$$

Width

General Stream Geometry

- Chapra's nomenclature for discharge coefficients
 - Velocity

 $U = aQ^b$

Depth

 $H = \alpha Q^{\beta}$

Width

$$B = cQ^f$$

Where:
$$b + \beta + f = 1$$

Because Q=UHB

Sample Problem

The Black River, NY between MP 74.2 and MP 64.7 is to be characterized as a constant flow - constant area reach. Assume the following cross-sectional area (A_c) were measured for the given

£1	_	***	_	
П	U	W	2	

MP 74.2

MP 64.7

Estimate travel time through this reach for flows of 600 and 3000 cfs
David A. Reckhow

CEE 577 #10

$$H = \alpha Q^{\beta}$$

$$B = cQ^{f}$$

$$A = BH = \alpha cQ^{(\beta+f)}$$

 $A = 18.3Q^{0.589}$

Manning Equation

- Derived from the momentum balance
 - relates velocity to channel characteristics including slope

Manning Equation adapted to a

Trapezoidal section

- Area, perimeter and hydraulic radius can all be expressed as a function of depth
- substitute these into the Manning Equation and calculate "y" from known "O

$$Q = \frac{1.486}{n} A_c R^{\frac{2}{3}} S_e^{\frac{1}{2}}$$

$$Q = \frac{1.486}{n} \frac{\left[(B_o + sy)y \right]^{5/3}}{\left(B_o + 2y\sqrt{s^2 + 1} \right)^{2/3}} S_e^{\frac{1}{2}}$$

$$A_c = (B_o + sy)y$$

$$P = B_o + 2y\sqrt{s^2 + 1}$$

$$R = \frac{A_c}{P} = \frac{(B_o + sy)y}{B_o + 2y\sqrt{s^2 + 1}}$$

Distributed Systems

- Lecture #9 in Chapra's book
 - systems that have spatial resolution
- Ideal Reactors

$$\Delta V \frac{\partial c}{\partial t} = J_{in} A_c - J_{out} A_c \pm reaction$$

Plug-Flow Reactors (PRF)

$$\Delta V \frac{\partial c}{\partial t} = J_{in} A_c - J_{out} A_c \pm reaction$$

$$\Delta V \frac{\partial c}{\partial t} = Uc A_c - U \left(c + \frac{\partial c}{\partial x} \Delta x \right) A_c - k \Delta V \overline{c}$$

Combining and taking the limit as $\Delta x \rightarrow 0$

$$\frac{\partial c}{\partial t} = -U \frac{\partial c}{\partial x} - kc$$

Which at steady state is:

$$0 = -U\frac{\partial c}{\partial x} - kc$$

And for $c=c_0$ at x=0:

$$c = c_o e^{-k\frac{x}{u}}$$

David A. Reckhow

CEE 577 #10

Plug Flow vs CSTR

First order reactions

$$c = c_o e^{-k\frac{x}{u}}$$

$$c = c_o \frac{Q}{Q + kV}$$

- Mixed Flow: intermediate
 - read section 9.1.3

Mixed Flow

Consider mixing in the longitudinal direction

Combining and taking the limit as $\Delta x \rightarrow 0$

$$\frac{\partial c}{\partial t} = -U\frac{\partial c}{\partial x} + E\frac{\partial^2 c}{\partial x^2} - kc$$

Which at steady state is:

$$0 = -U\frac{\partial c}{\partial x} + E\frac{\partial^2 c}{\partial x^2} - kc$$

David A. Reckhow

Mixed Flow

$$\Delta V \frac{\partial c}{\partial t} = J_{in} A_c - J_{out} A_c \pm reaction$$

$$\Delta V \frac{\partial c}{\partial t} = \left[Uc - E \frac{\partial c}{\partial x} \right] A_c - \left[U \left(c + \frac{\partial c}{\partial x} \Delta x \right) - E \left(\frac{\partial c}{\partial x} + \frac{\partial c}{\partial x} \left(\frac{\partial c}{\partial x} \right) \Delta x \right) \right] A_c - k \Delta V \overline{c}$$

Consider mixing in the longitudinal direction

Peclet Number

$$P_e = \frac{LU}{E} = \frac{\text{rate of advective transport}}{\text{rate of dispersive transport}}$$

 $P_e > 10$, PFR-like $P_e < 0.1$, CSTR-like

Application of PRF to streams

Point sources

- Mass balance:
 - Water Flow
 - Concentration

$$Q = Q_w + Q_r$$

$$c_o = \frac{Q_w c_w + Q_r c_r}{Q_w + Q_r}$$

Assumptions

■ The ideal reactor is:

- Completely mixed in cross-section
- Without longitudinal (downstream) mixing
- Steady State

Top view

Chloride Problem

1.55 cfs/MGD

 Determine the required industrial reduction in chlorides to maintain a desired chloride concentration of 250 mg/L at the intake

$$Q_w$$
=6.5 MGD
 c_w = 1500 mg/L

Water intake

Q=25 cfs c=30 mg/L

$$Q_T = 5 \text{ cfs}$$
 $c_T = 30 \text{ mg/L}$

• To next lecture