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Completely-mixed lake or CSTR
 Often useful to assume perfect mixing

 same concentration throughout system
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Accumulation
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Loading
 Point Sources

 Municipal Wastewater
 Industrial Wastewater
 Tributaries

 Non-point sources
 agricultural
 silvicultural
 atmospheric
 urban & suburban runoff
 groundwater
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Diffuse origin
more transient

often dependent on precipitation

Well defined origin
easily measured
more constant

Loading W t Qc tin= =( ) ( )



Reported Values Of Selected Waste Input Parameters In 
The United States
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Variable Unitsa Municipal
Influentb

CSOc Urban
Runoffd

Agriculture
(lb/mi2-d) e

Forest
(lb/mi2-d)e

Atmosphere
(lb/mi2-day)f

Average
daily flow

gcd 125

Total
suspended
solids

mg/L 300 410 610 2500 400

CBOD5g mg/L 180 170 27 40 8
CBODUg mg/L 220 240
NBODg mg/L 220 290
Total
nitrogen

mg-N/L 50 9 2.3 15 4 8.9-18.9

Total
phosphorus

mg-P/L 10 3 0.5 1.0 0.3 0.13-1.3

Total
coliforms

106/100
mL

30 6 0.3

Cadmium µg/L 1.2 10 13 0.015
Lead µg/L 22 190 280 1.3
Chromium µg/L 42 190 22 0.088
Copper µg/L 159 460 110
Zinc µg/L 241 660 500 1.8
Total PCB µg/L 0.9 0.3 - 0.002-0.02

(Table 1.3 from Thomann & Mueller)


		Variable

		Unitsa

		Municipal Influentb

		CSOc

		Urban Runoffd

		Agriculture (lb/mi2-d) e

		Forest (lb/mi2-d)e

		Atmosphere (lb/mi2-day)f



		Average daily flow

		gcd

		125

		

		

		

		

		



		Total suspended solids

		mg/L

		300

		410

		610

		2500

		400

		



		CBOD5g

		mg/L

		180

		170

		27

		40

		8

		



		CBODUg

		mg/L

		220

		240

		

		

		

		



		NBODg

		mg/L

		220

		290

		

		

		

		



		Total nitrogen

		mg-N/L

		50

		9

		2.3

		15

		4

		8.9‑18.9



		Total phosphorus

		mg-P/L

		10

		3

		0.5

		1.0

		0.3

		0.13‑1.3



		Total coliforms

		106/100 mL

		30

		6

		0.3

		

		

		



		Cadmium

		(g/L

		1.2

		10

		13

		

		

		0.015



		Lead

		(g/L

		22

		190

		280

		

		

		1.3



		Chromium

		(g/L

		42

		190

		22

		

		

		0.088



		Copper

		(g/L

		159

		460

		110

		

		

		



		Zinc

		(g/L

		241

		660

		500

		

		

		1.8



		Total PCB

		(g/L

		0.9

		0.3

		‑

		

		

		0.002‑0.02







Footnotes for T&M Table 1.3
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aUnits apply to municipal, CSO (combined sewer overflow), and 
urban runoff sources; gcd = gallons per capita per day.

bThomann (1972); heavy metals and PCB, HydroQual (1982).
cThomann (1972); total coli, Tetra Tech, (1977); heavy metals Di 

Toro et al. (1978): PCB. Hydroscience (1978).
dTetra Tech (1977): heavy metals, Di Toro et al. (1978).
eHydroscience (1976a).
fNitrogen and phosphorus, Tetra Tech (1982): heavy metals and 

PC13, HydroQual (1982).
gCBOD5 = 5 day carbonaceous biochemical oxygen demand 

(CBOD); CBODU = ultimate CBOD; NBOD = nitrogenous BOD.



Loading: Flow as a function of precipitation
 Non point sources are difficult to characterize

 Empirical approach: export coefficients (see Table 3.1 in 
T&M)

 Mechanistic approach: relate to meteorology, topology, 
etc.

 Flow: use the rational formula:  QR = cIA
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Runoff flow [L3/T]
Runoff coefficient
0.1-0.3  for rural areas (1 person/acre)
0.7-0.9  for heavy commercial areas

Rainfall Intensity [L/T]

Drainage
Area [L2]

Note:
1 acre-in/hr ≈1 cfs



Runoff: Contrasting approaches
 Lumped model

 Empirical
 Built on a single rainfall intensity from rain gage data

 Distributed model
 Mechanistic
 Built on radar data for rainfall

 Spatial & temporal resolution
 Combine with overland flow models

 Many computer codes
 CASC2D, CUHP, CUHP/SWMM, DR3M, HEC-1, HSPF, PSRM, 

SWMM, TR20 
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Loading: conc. as a function of flow
 It is common for pollutant concentrations from 

uncontrolled sources (e.g. tributaries) to be correlated with 
flow
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Loading Example: #3.1 from T&M
 Data: Runoff from 100 mi2 of agricultural lands drains to a point in a river 

where a city of 100,000 people is located.  The city has a land area of 10 mi2

and its sanitary sewers are separated from its storm drains.  A sewage 
treatment plant discharges to the river immediately downstream of the 
city.  The area receives an annual rainfall of 30 in. of which 30% runs off 
the agricultural lands and 50% drains off the more impervious city area.

 Problem: Using the loading data from Table 1.3 and the residual fractions 
cited in the table below, compare the contributions of the atmospheric, 
agricultural and urban sources to annual average values of flow, CBOD5, 
total coliform bacteria, and lead in the river.  Neglect any decay 
mechanisms for all parameters.
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 (at) (ag) (ur) Wastewater Treatment Plant 
Item Atmospheric Agricultural Urban Runoff Influent Resid. Fract. 
Fow  30% precip. 50% precip. 125 gcd 1.00 
CBOD5  40 lb/mi2-d 27 mg/L 180 mg/L 0.15 
Total coliform  100/100 mL 3x105/100mL 3x106/100mL 0.0001 
Lead 1.3 lb/mi2-d  280 µg/L 22 µg/L 0.05 
 


		

		(at)

		(ag)

		(ur)

		Wastewater Treatment Plant



		Item

		Atmospheric

		Agricultural

		Urban Runoff

		Influent

		Resid. Fract.



		Fow

		

		30% precip.

		50% precip.

		125 gcd

		1.00



		CBOD5

		

		40 lb/mi2-d

		27 mg/L

		180 mg/L

		0.15



		Total coliform

		

		100/100 mL

		3x105/100mL

		3x106/100mL

		0.0001



		Lead

		1.3 lb/mi2-d

		

		280 (g/L

		22 (g/L

		0.05







Solution to loading problem
 Flow contributions
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Solution to loading problem (cont.)
 CBOD5 loading
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Solution to loading problem (cont.)
 Lead loading
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Other Terms in the Mass Balance
 Outflow

 Reaction

 Settling
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Outflow Qc=

Reaction kM kVc= =

Settling vA c
k Vc

s
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=
=

k v
Hs = V A Hs=Since:

J=vc
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Sediment-
water interface



Combining all terms:

 Dependent variable: c
 Independent variable: t
 Forcing function: W(t), the way in which the 

external world “forces” the system
 Parameters: V, Q, k, v, As
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V
dc
dt

W t Qc kVc vA cs= − − −( )



Steady State Case

 Mass Balance

 Solution

 Assimilation factor

 Where
 The assimilation or “cleansing” factor
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Steady State Example
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A lake has the following characteristics:
Volume m

d
C

=

−

50 000 3

1

,  
Mean Depth =  2 m

Inflow =  Outflow =  7500 m
Temperature =  25

3

o

The lake receives the input of a pollutant from three sources: 
a factory discharge of 50 kg d-1, a flux from the atmosphere 
of 0.6 g m-2 d-1, and the inflow stream that has a 
concentration of 10 mg/L.  If the pollutant decays at the rate 
of 0.25/d at 20oC (note: Ɵ=1.05).

a. compute the assimilation factor
b. steady state concentration
c. show breakdown for each term

#3.1 from Chapra (pg.52)



Example 3.1: Solution
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Example 3.1: Solution (cont.)
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The surface area of the lake is:

A
V
H

ms = = =
50 000

2
25 000 2,

,

The atmospheric and inflow load is then:

W JA g datmosphere s= = =0 6 25 000 15 000. ( , ) , /

W g dlowinf ( ) , /= =7500 10 75 000
Combining all loads: W W W W

g d

factory atmosphere low= + +
= + +
=

inf
, , ,
, /

50 000 15 000 75 000
140 000



Example 3.1: Solution (cont.)
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And finally, the concentration:

Lmg
dm
dg

a
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=

=



Transfer function & residence time
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 Pittsburgh
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Bromide in PA
Kelly D. Good and Jeanne 
M. VanBriesen, 2016 
“Current and Potential 
Future Bromide Loads 
from Coal-Fired Power
Plants in the Allegheny 
River Basin and Their 
Effects on Downstream
Concentrations”, ES&T 50, 
9078
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 To next lecture
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