CEE 577

FINAL EXAM

Closed book, 2 sheets of notes allowed.

Answer question #1 and one of the remaining 2 questions. Please state any additional assumptions you made, and show all work.

1. (70%) River Problem (answer this problem)

Ruminant River emerges from pristine headwaters and runs through an agricultural region before it reaches the city of Vacheville. The BOD of the headwaters is 6 mg/L, and the dissolved oxygen is 8.2 mg/L (saturation is 10.1 mg/L for 15° C). Starting at mile point zero, there is a significant non-point agricultural runoff of BOD amounting to 45 kg/mile/day. At mile point 3.0, the stream is met by the Vacheville WWTP outfall. Here a WW flow of 2 cfs is discharged with a CBOD of 100 mg/L, an ammonia-N concentration of 14 mg-N/L and a DO of 6 mg/L. Immediately past this outfall is 5 more miles of agricultural land. This is better managed than the upstream land, so that the runoff BOD averages 25 kg/mile/day. **Calculate the dissolved oxygen concentration 5 miles downstream of the Vacheville WWTP outfall** (T=15°C). Assume the flow is constant at 40 cfs from the headwaters to the end of the non-point agricultural runoff. You may also assume an SOD downstream of the WWTP outfall of 1.5 g/m²/d.

Additional Information:

$$\begin{split} U &= 0.150 \text{ ft/sec} = 2.45 \text{ miles/day} \\ DO_{sat} \text{ or } C_s &= 10.1 \text{ mg/L (at 15^{\circ}\text{C})} \\ BOD \text{ deoxygenation rate } (k_N = k_d) &= 0.8 \text{ day}^{-1} \text{ (at 15^{\circ}\text{C})} \\ CBOD \text{ settling rate } (k_s) &= 0.080 \text{ day}^{-1} \text{ (at 15^{\circ}\text{C})} \end{split}$$

$$\begin{split} T &= 15^{0}C\\ H &= 4 \ ft \ = 1.22 \ m\\ for \ k_{N} \ and \ k_{d}, \ \theta &= 1.047\\ for \ reareation, \ \theta &= 1.024 \end{split}$$

1

2. (30%) Toxics Problem (answer either this problem or #3)

Lake Lackluster is situated in a pristine watershed. Although there are no known point sources of Methyl t-Butyl Ether (MtBE), the lake does receive a substantial loading from rainfall. Using the information below, calculate the following:

A. Fraction adsorbed in the water column

B. Velocity of volatilization

Assume the lake is at a temperature of 25°C. (universal gas constant, $R=8.206 \times 10^{-5}$ atm m³/°K mole).

Characteristic	Value		
Volume	3,000,000 m ³		
Average Outflow	20,000 m ³ /day		
Mean Depth	3 m		
Mean Wind Speed	0.5 m/sec		
Solids Settling Rate	0.2 m/d		
Solids Burial Rate	0.000007 m/d		
Sediment:Water Diffusive Exchange Rate	0.001 m/d		
Water Column Suspended Solids	2.2 mg/L		
Mixed Sediments Suspended Solids	12,000 mg/L		
Thickness of Mixed Sediments	0.2 meters		
Fraction of Organic Carbon in Solids	0.2		
Density of Suspended Solids	1.55 g/mL		
Drainage area	2300 ha		

Characteristics of Lake Lackluster

Selected Physical and Chemical Properties of MtBE

Property	Value	Special Conditions	Reference
Molecular Weight	88.15		
Melting Point	-109°C		Weast, 2000
Boiling Point	55.2°C		Weast, 2000
Density	0.7405 g/mL	20°C	Weast, 2000
Aqueous Solubility	4-5%	20°C	Gilbert & Calabrese, 1992
Log K _{ow}	1.05		Gilbert & Calabrese, 1992
Vapor Pressure	$2.45 \times 10^{+2} \text{ mm Hg}$	20°C	Merck, 2000
Henry's Law Constant	5.87×10^{-4} atm-m ³ /mol		HSDB, 1994
Log K _{oc}	2.7		Davidson et al., 1980
Diffusivity in Water	$4 \text{ x } 10^{-6} \text{ cm}^2/\text{s}$		Estimated
Biodegradation Rate	0.001 d ⁻¹	dissolved	Estimated
Photolysis Rate	0.0041 d^{-1}		Estimated
Hydrolysis Rate	0.0071 d ⁻¹	25°C, neutral only	Estimated

The following relationship between the liquid film mass transfer coefficient (K_l) and the wind speed (U_w) and toxicant diffusivity in water (D_l) may prove useful.

 $K_l \approx 0.0017 D_l U_w$

3. (30%). Short Answer (answer either this problem or #2)

On a separate sheet of paper, answer any five (5) of the following questions

- A. Describe and contrast two different algal growth models.
- B. Explain the benefits of conducting a dye study on a river as compared to the use of a mechanical (e.g., Pygmy) flow meter
- C. What are the different sources and sinks of heat energy in a surface water?
- D. Describe 3 general approaches taken for modeling sorption of toxics to particles in surface waters
- E. Describe the various steps involved in photolysis of toxics in surface waters. Include some discussion on how these steps are modeled.
- F. Discuss the ultimate fate of PCBs in the Great Lakes. Where do they end up, and why?
- G. Describe how you would estimate the bulk vertical mixing coefficient in a stratified lake.
- H. Why does the Streeter-Phelps equations sometimes predict negative concentrations of dissolved oxygen, despite the fact that this is physically impossible? How can one correct this problem?