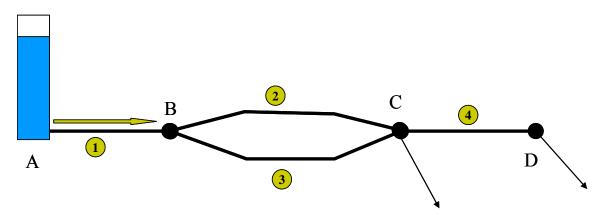
CEE 371	March 10, 2009
CDD J / I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Exam #1

Closed Book, one sheet of notes allowed


Please answer one question from the first two, one from the second two and one from the last three. The total potential number of points is 100. Show all work. Be neat, and box-in your answer.

Please grade the following questions:						
1 or 2						
3 or 4						
5, 6 or 7						
Circle one from each row						

A. Answer any 1 of the following 2 questions

1. Basic Hydraulics (40 points)

As shown in the schematic below, water can flow from the storage tank through the pipes to satisfy the demands at nodes C & D. Relevant data for the system are shown in the table below. <u>Calculate results for all missing values in the table</u>. Explain and show all work, and assume a Hazen Williams "C" value of 100 for all pipes.

PIPES					NODE	ES			
	Length	Diam	Flow	h_{f}		Elev.	HGL	Pressure	Demand
No.	(ft)	(in)	(gpm)	(ft)	No.	(ft)	(ft)	(psi)	(gpm)
1	5000	16			A	450	560		0
2	800	10			В	320			0
3	1000	8		14	С	380			500
4	2500	12			D	350			

use Hazen - Williams equation

Step#

Q in gpm; D in inches

$$Q = 0.281CD^{2.63} \left(\frac{h_f}{L}\right)^{0.54}$$

1 calculate flow for pipe #3

2 note that headloss for pipe #2 must be the same as for pipe #3 (they are parallel pipes)

 $h_L = 10.5 \frac{Q^{1.85} L}{C^{1.85} D^{4.87}}$

3 calculate flow for pipe #2

4 flow in pipe #1 is sum of flows for #2 and #3

5 flow in pipe #4 is equal to #1 minus demand at node

C

6 demand at node D must be equal to flow in pipe #4

7 calculate headloss in pipe #1

8 calculate headloss in pipe #4

use HGL and Bernoulli Equation

$$HGL_2 = HGL_1 - h_{L_{1-2}}$$

 $HGL = Z + \frac{P}{\gamma}$

Step#

9 calculate pressure at node A

10 determine HGL value for node B

11 determine HGL value for node C

12 determine HGL value for node D

13 calculate pressure at node B

14 calculate pressure at node C

15 calculate pressure at node D

Answers in Red below

PIPES						NODES					
	Length	Diam	Flow	h_{f}		Elev.	HGL	Pressure	Demand		
No.	(ft)	(in)	(gpm)	(ft)	No.	(ft)	(ft)	(psi)	(gpm)		
1	5000	16	2013.68	18.56	A	450	560	47.67	0		
2	800	10	1348.80	14	В	320	541.44	95.96	0		
3	1000	8	664.88	14	C	380	527.44	63.89	500		
4	2500	12	1513.68	22.21	D	350	505.23	67.27	1513.68		

2. Water Distribution Pipe Systems (40 points)

a. For the pipe system shown below (Figure 1; including pipes #1-#4), determine the length of a single equivalent pipe that has a diameter of 10 inches. Use the Hazen Williams equation and assume that $C_{\rm HW} = 120$ for all pipes. Start by assuming a flow of 1000 gpm in pipe #2. Please show all steps.

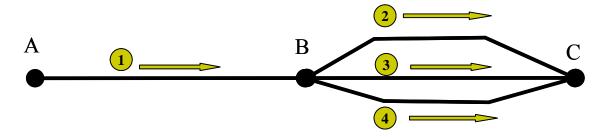


Figure 1. Pipe System for equivalent pipe problem

Table 1. Pipe Data for Figure 1 Pipe System

	Pipe 1	Pipe 2	Pipe 3	Pipe 4	
Length	900	1100	800	1000	ft
Diameter	12	10	8	10	in

Steps

1. Determine headloss in pipe #2; which is the node B-C headloss

$$h_L = 10.5 \frac{Q^{1.85} L}{C^{1.85} D^{4.87}}$$
$$= 10.5 \frac{(1000)^{1.85} 1100}{(120)^{1.85} (10)^{4.87}}$$
$$= 7.87 ft$$

2. Establish flow for pipe 3 and 4 based on the node B-C headloss.

For pipe #3

$$Q = 0.281 \frac{h_L^{0.54} CD^{2.63}}{L^{0.54}}$$
$$= 660.16 gpm$$

For pipe #4

$$Q = 0.281 \frac{h_L^{0.54} CD^{2.63}}{L^{0.54}}$$
$$= 1052.87 gpm$$

3. Determine the total flow from node B to C

$$Q = 1000 + 660 + 1053 = 2713 \text{ gpm}$$

While not necessary for this problem, you may calculate the length of 10 inch pipe that is equivalent to pipes 2, 3 and 4. The correct length would be 174 ft.

4. Calculate headloss in pipe 1 based on the recognition it must carry the total flow for pipes 2-4

$$h_L = 10.5 \frac{Q^{1.85} L}{C^{1.85} D^{4.87}}$$
$$= 16.80 ft$$

- 5. Determine the overall headloss by adding the headloss for node A-B and B-C $h_L = 7.87 + 16.80 = 24.67$ ft
- 6. Back calculate a 10" pipe length that has that headloss at the total system flow.

$$L = \frac{h_L C^{1.85} D^{4.87}}{10.5 Q^{1.85}}$$
$$= \frac{24.67 (120)^{1.85} (10)^{4.87}}{10.5 (2713)^{1.85}}$$
$$= 544 ft$$

B. Answer any 1 of the following 2 questions

3. Population and Water Use (40 points)

Table 1 contains population data for Durham NC. In 2005, Durham's Division of Water Supply and Treatment provided an average of 27.65 MGD to its customers.

Table 1. Population for Durham NC, 1890 -2005

Year	Population
1890	5,485
1900	6,679
1910	18,241
1920	21,719
1930	52,037
1940	60,195
1950	73,368
1960	84,642
1970	100,768
1980	100,831
1990	136,611
2000	187,035
2005	208,816

a. Using this historical population, make population projections for 2015 and 2030 for Durham. Use two different mathematical models of your choice. Discuss the

pros and cons of the two models you selected. Clearly explain your approach and state all assumptions.

- b. Using your population projections from part "a", estimate the average daily and maximum daily demands (in MGD) for 2015 and 2030.
- c. Calculate the fire demand needed for Durham for 2030 using your population projections from part "a". Express answers in units of gpm and MGD.

Solution:

First you need a strategy to calculate average demand based on predicted population. One valid approach is to assume the per capita average demand will remain constant (i.e., apply the value you have for 2005). This is preferable to use of a "national average" value such as 180 gpcd. Then you need a strategy to calculate maximum day demand. A valid approach here would be to use the 1.8 ratio as done in class. Finally you need the fire flow equation. While not perfect for this example, it is a reasonable way of estimating fire flows in the absence of other data

Per capita usage specific to Durham based on 2005 data:
$$usage = \frac{27,650,000gal}{208,514 \ people} = 132.4 \ gpcd$$

Max day demand requires use of a national average (e.g., 1.8 x avg demand), since we don't have any Durham-specific data

Fire flow can be determined from the standard equation:

$$Q = 1020 \left(\sqrt{P} \right) \left(1 - 0.01 \sqrt{P} \right)$$

I then Set $t_0 = 1890$, and proceeded as follows for each model:

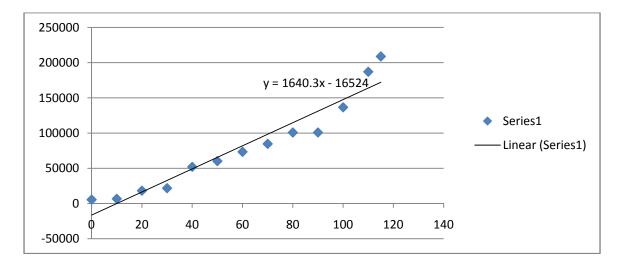
- 1. calibrate models (evaluating coefficients)
- 2. apply models to predict population in 2015 and 2030
- 3. calculate average demand, maximum demand and fire flow for each prediction

applying and calibrating the models requires that you decide which data to use. There are many valid ways of doing this:

- select al data and do a least squares linear regression (this is what I've done below)
- inspect the data and select two or more data points that seem to represent current trends; them may be the last two data points, or possible some from the mid 1900s. I would not, however just select the first and last data point.

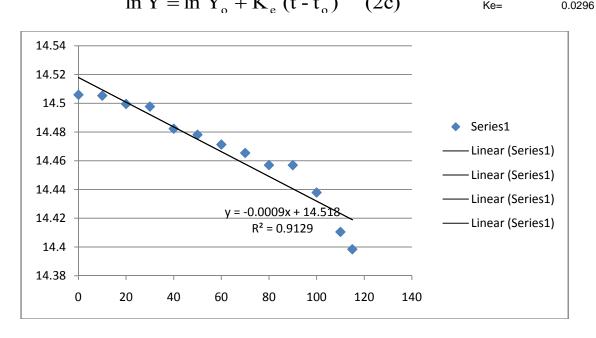
Below I show calculations and graphs for 4 different models. You only needed to do the calculations for two of these.

There are many ways of calibrating your model. The simplest is to select 2 dates and use only those population data. While easy, this method does not take fullest advantage of

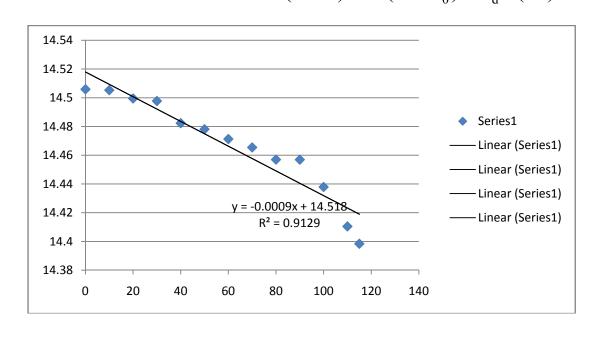

the complete data set. A more powerful approach is to use a least squares linear regression of the linearized data.

I inpa	r Mod	اما

$$Y = Y_o + K_a (t - t_o) \quad (1c)$$

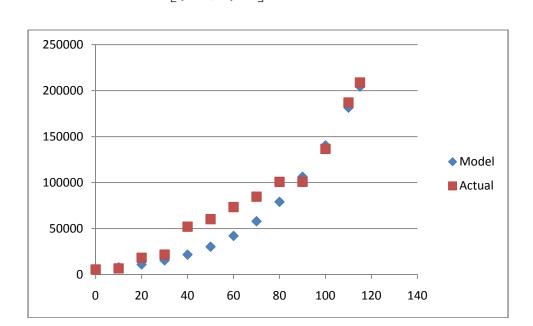

			Deman	d (MGD)	Fire Flow			
4.40	Vaar	Populatio	Aven	Max	(aun ma)	(MCD)		
t-t0	Year	n n	Avg	Max	(gpm)	(MGD)		
0	1890	5,485						
10	1900	6,679						
20	1910	18,241						
30	1920	21,719						
40	1930	52,037						
50	1940	60,195						
60	1950	73,368						
70	1960	84,642						
80	1970	100,768						
90	1980	100,831						
100	1990	136,611						
110	2000	187,035						
115	2005	208,816	27.65					
40=	00/-	400.54.1	0.4.00	44.00	40.000	47.44		
125	2015	188,514	24.96	44.93	12,082	17.41		
140	2030	213,118	28.22	50.80	12,717	18.32		

Using only the last two datapoints would get you a Ka of 4356



Exponential Model

wodei								
			Demand	(MGD)	Fire F	low		
t-t0	Year	Population	Avg	Max	(gpm)	(MGD)		In(pop)
0	1890	5,485	_					8.6097724
10	1900	6,679						8.8067236
20	1910	18,241						9.8114271
30	1920	21,719						9.9859427
40	1930	52,037						10.85971
50	1940	60,195						11.005345
60	1950	73,368						11.203243
70	1960	84,642						11.346186
80	1970	100,768						11.520576
90	1980	100,831						11.521201
100	1990	136,611						11.824893
110	2000	187,035						12.139051
115	2005	208,816	27.65					12.249209
125	2015	352,992	46.74	84.13	15,563	22.43		12.7742
140	2030	550,290	72.87	131.16	18,314	26.39		13.2182
1 _r	ı Y =	ln V +	K (t	_ t)	(2c)	Ln Ka	Yo =	9.0742



Declining Growt	h Model		_			_	z =	2,000,000
			Demand	` '	Fire F			
t-t0	Year	Pop = Y	Avg	Max	(gpm)	(MGD)		In(Z-Y)
0	1890	5,485						14.505911
10		6,679						14.505313
20	1910	18,241						14.499495
30	1920	21,719						14.497739
40	1930	52,037						14.482295
50	1940	60,195						14.478098
60	1950	73,368						14.471284
70	1960	84,642						14.465415
80	1970	100,768						14.45696
90	1980	100,831						14.456927
100	1990	136,611						14.437907
110	2000	187,035						14.410474
115	2005	208,816	27.65					14.398387
125	2015	187,288	24.80	44.64	12,049	17.36		14.4103
140	2013	,			,			
140	2030	210,548	27.88	50.18	12,653	18.23		14.3974
							Ln(Z-Yo) =	14.51796
		\		7 (+ +)	(a a)		Kd=	-0.000861
Y =	$Y_{o} + ($	$(Z-Y_{o})($	$(1 - e^{-t})$	$(\iota^{-\iota_o})$	(3d)			0.00000.
	•	0 /	•	,	` /			
			ln(7)	7 _ V) -	= ln(Z -	- V) - I	Z + (3)	•)
			111(2	- I J -	– m(z –	- 1 ₀ j - 1	\mathbf{x}_{d}	<i>')</i>

			Demand	(MGD)	Fire Flo	w			
t-t0	Year	Pop = Y	Avg	` Max	(gpm)	(MGD)		logistics	% error
0	1890	5,485						5,485	0%
10	1900	6,679						7,754	16%
20	1910	18,241						10,944	-40%
30	1920	21,719						15,412	-29%
40	1930	52,037						21,638	-58%
50	1940	60,195						30,249	-50%
60	1950	73,368						42,038	-43%
70	1960	84,642						57,953	-32%
80	1970	100,768						79,039	-22%
90	1980	100,831						106,294	5%
100	1990	136,611						140,414	3%
110	2000	187,035						181,461	-3%
115	2005	208,816	27.65					204,346	-2%
125	2015	253,762	33.60	60.48	13,660	19.68		253,762	
140	2030	332,018	43.96	79.13	15,199	21.90		332,018	
	λī	K			KN_o		K =	600,000	pop
	$I\mathbf{v}_t = -$	$\lceil (\nu \rangle)$		$={N}$	$(K-N)e^{-rt}$	t	r =	0.035	yr-1
	1	$+\left \left(\frac{K-I}{N_0}\right)\right $	$\left e^{-rt} \right $	1 v o T	$\frac{KN_o}{(K-N_o)e^{-rt}}$		No =	5,485	рор

Logistics Model

4. Water Distribution System Storage (40 points)

- Given the hourly average demand rates shown below (in gpm), calculate the uniform 24 hour supply (or pumping) rate and the required equalizing storage volume (in million gallons). Prepare a cumulative demand graph for the problem. Find the equalizing storage using the cumulative demand graph.
- b. Make an estimate of the total required distribution storage volume for this community. Assume that the information for part "a" is for the average day flow for a community of 20,000 people and that the ratio of Q max day to Q average day is 1.8 for this community. Also assume that this community has a backup

supply it can use in emergencies. For design purposes assume a fire duration of 10 hours. Clearly state any additional assumptions you make.

12 midnight	1000
1 AM	950
2	900
3	875
4	850
5	900
6	1840
7	4100
8	3850
9	2850
10	2200
11	3050

12 noon	3150
1 PM	3250
2	2830
3	2732
4	3050
5	3350
6	3515
7	4500
8	4345
9	2610
10	1100
11	1050
12 midnight	1000

Answer:

Preliminary calculation for demand graphs:

_				1
			24 hr supply	24 hr supply
	TIME	DEMAND (GPM)	Cumulative Demand (gal)	Cumulative Supply (gal)
midnight	12	1000	0	0
a.m.	1	950	58500	147118
	2	900	114000	294235
	3	875	167250	441353
	4	850	219000	588470
	5	900	271500	735588
	6	1840	353700	882705
	7	4100	531900	1029823
	8	3850	770400	1176940
	9	2850	971400	1324058
	10	2200	1122900	1471175
	11	3050	1280400	1618293
noon	12	3150	1466400	1765410
	1	3250	1658400	1912528
p.m.	2	2830	1840800	2059645
	3	2732	2007660	2206763
	4	3050	2181120	2353880
	5	3350	2373120	2500998
	6	3515	2579070	2648115
	7	4500	2819520	2795233

	8	4345	3084870	2942350
	9	2610	3293520	3089468
	10	1100	3404820	3236585
	11	1050	3469320	3383703
	12	1000	3530820	3530820
Avg Q		2452		

Cumulative flow graph for calculating Equalizing Storage

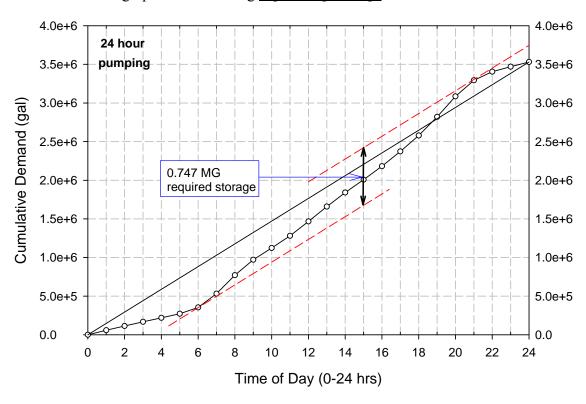


Figure 2. Cumulative Demand Figure 2. Cumulative Demand with 24 Hour Pumping

Assumption: use 24 hr pumping; multiple sources so that emergency storage isn't needed.

Fire Flow

$$Q_{fire} = 1020 \left(\sqrt{P} \right) \left(1 - 0.01 \sqrt{P} \right)$$

$$= 1020 \left(\sqrt{20} \right) \left(1 - 0.01 \sqrt{20} \right)$$

$$= 4358 \, gpm$$

$$= 6.27 MGD$$

$$V_{fire} = Duration * Q_{fire} = (10/24) \, days * 6.27 \, MGD = 2.61 \, MG$$

Equalizing storage based on average daily flow (determined in part 1), must be adjusted for max daily flow

$$Q_{equal} = 1.8 \times 0.75 \text{ MG} = 1.34 \text{ MG}$$

Total Required Storage

$$Q_{tot} = 2.61 + 1.34 = 3.95 MG$$

C. Answer one of the following 3 questions

5. Cost Estimation (20 points)

Bids for construction of the new 7500 ft long transmission main are taken and a young CEE 371 engineer informs Oakdale's experienced Director of Public Works that the low bidder's cost is \$2,080,000. The Director is clearly unhappy and says, "They must be nuts! Just a short while back in 1970 (ENRCCI = 1381) in Milltown (a neighboring community) we installed 2.5 miles of that same size pipe for only \$220,000" The engineer replies, "I think they have given a fair price." Who do you agree with? Support your answer quantitatively and state assumptions (Feb 2009 ENRCCI = 8533).

Solution:

The director has a valid point. Even with the increase in the CCI, the cost per foot in current (2009) dollars was much lower for the 1970 Milltown project.

Year	CCI
1970	1381
2009	8533

Bid
\$ 220,000
\$ 2,080,000

length		cost per ft			
ft	mi as bid		as bid	2009 dollars	
13200	2.5	\$	16.67	\$	102.98
7500		\$	277.33	\$	277.33

6. <u>Multiple Choice</u>. Circle the answer that is most correct. (20 points total; 2.5 points each)

- a. A typical design period for a water transmission main is
 - 1. 1 year
 - 2. 5 years
 - 3. 25 years
 - 4. 50 years
 - 5. 300 years

- b. A town has a present population of 45,000 people and has grown by 5000 people over the last 10 years. If you use a linear (arithmetic) model for growth, what population would you predict for 20 years into the future?
 - 1. 50,000
 - 2. 55,000
 - 3. 57,000
 - 4. 65,000
 - 5. none of the above
- c. For question b, what would the population be if you assume exponential growth?
 - 1. 50,000
 - 2. 55,000
 - 3. 57,000
 - 4. 65,000
 - 5. none of the above

Note that $K_e = 0.0118$ yr-1 Which gives y=56,953 ~ 57,000 For 20 years in the future

- d. A community has a population of 17,500. What fire demand would you design for in MGD?
 - 1. 5.9 MGD
 - 2. 62.8 MGD
 - 3. 0.6 MGD
 - 4. 43,600 MGD
 - 5. none of the above
- e. The average daily demand for the community per question d is 2.1 MGD. Their average daily per capita demand is
 - 1. 1750 gpcd
 - 2. 175 gpcd
 - 3. 120 gpcd
 - 4. 80 gpcd
 - 5. none of the above
- f. An estimate of the maximum daily demand for the community per questions d and e is.
 - 1. 2.1 MGD
 - 2. 3.8 MGD
 - 3. 5.9 MGD
 - 4. 21 MGD
 - 5. none of the above
- g. Drinking water distribution systems
 - 1. Are best designed as grids with many loops
 - 2. Need not provide adequate water storage within the pipes themselves
 - 3. Should be constructed with the smallest pipes that can adequately deliver fire flow and maximum daily demand
 - 4. Should not provide pressures above 150 psi
 - 5. All of the above
 - 6. None of the above
- h. Connecting identical pumps in parallel
 - 1. Results in a higher shutoff head downstream of the pumps than if they were in series
 - 2. Results in a higher flow rate at normal operating heads, than if they were in series

- 3. Is always the most economical solution
- 4. Is never done because of high maintenance costs
- 5. All of the above
- 6. None of the above

7. Power (20 points)

Water is pumped 8 miles from a reservoir at an elevation of 120 ft to a second reservoir at an elevation of 180 ft. The pipeline connecting the reservoirs is 48 inches in diameter. It is concrete with a C of 100, the flow is 25 MGD, and the pump efficiency is 82%. What is the monthly power bill if electricity costs 10 cents per kilowatt-hour? (ignore minor losses)

Solution:

Use the Hazen-Williams and power equations:

$$h_L = 10.6 \frac{Q^{1.85} L}{C^{1.85} D^{4.87}}$$

Where Q is in MGD, and D is in feet

Then use the Bernoulli equation:

$$\frac{P_1}{\gamma} + \frac{v_1^2}{2g} + Z_1 = \frac{P_2}{\gamma} + \frac{v_2^2}{2g} + Z_2 + h_{L1 \to 2}$$

Recognizing that velocity drops out, and that the pressure in an open reservoir is zero, this becomes

$$h_T = \frac{P_1}{\gamma} = Z_2 - Z_1 + h_{L1 \to 2}$$

power equation:

$$P = \frac{Q \gamma h_T}{\eta} = \frac{25 MDG \left(62.4 \frac{lb}{f_{f^3}}\right) 100.289 ft}{0.82} 1.54 \frac{ft^3}{MGD} 1.3558 \frac{watts}{ft - lb/s} = 4.0 \times 10^5 watts$$

And finally the results:

1 calculate headloss

2 Calculate the total head

$$hT = 100.289 \text{ ft} = 30.56809 \text{ m}$$

3 calculate power

4 cost

Good stuff to know

Conversions

$$1 \text{ MGD} = 694 \text{ gal/min} = 1.547 \text{ ft}^3/\text{s} = 43.8 \text{ L/s}$$

$$1 \text{ ft}^3/\text{s} = 449 \text{ gal/min}$$

$$g = 32 \text{ ft/s}^2$$

$$W=\gamma = 62.4 \text{ lb/ft}^3 = 9.8 \text{ N/L}$$

$$1 \text{ hp} = 550 \text{ ft-lbs/s} = 0.75 \text{ kW}$$

1 mile =
$$5280$$
 feet 1 ft = 0.3048 m

$$1 \text{ watt} = 1 \text{ N-m/s}$$

1 psi pressure = 2.3 vertical feet of water (head)

At 60 °F, $v = 1.217 \times 10^{-5} \text{ ft}^2/\text{s}$

$$\begin{split} HGL &= Z + P/\gamma & EGL &= V^2/2g + Z + P/\gamma \\ &[V^2/2g + Z + P/\gamma]_1 + H_{pump} = & [V^2/2g + Z + P/\gamma]_2 + H_{L \; 1\text{-}2} \end{split}$$

Hazen-Williams equation (circular pipe)

Q in cfs, V in ft/s, D in ft:

$$Q = 0.432 \text{ C } D^{2.63} \text{ S}^{0.54}$$
 $S = h_f/L = 4.73 (Q^{1.85})/(C^{1.85} D^{4.87})$

Q in gpm, D in inches:

$$Q = 0.281 \text{ C } D^{2.63} \text{ S}^{0.54} \qquad \qquad S = h_f/L = 10.5 \text{ (Q}^{1.85})/(C^{1.85} D^{4.87})$$

Darcy-Weisbach equation:

$$h_f = f(L/D) (V^2/2g)$$
 $Q = (g \pi^2/8)^{0.5} f^{-0.5} D^{2.5} S^{0.5}$
 $Re = V D/v$

Pump Power: $P = (\gamma Q H)/\eta$

Population Projection Models:

Linear:
$$dY/dt = K_a$$
 $Y = Y_o + K_a(t - t_o)$

Exponential:
$$dY/dt = K_e Y$$
 $K_e = \frac{\ln Y_2 - \ln Y_1}{t_2 - t_1}$ $\ln Y = \ln Y_0 + K_e (t - t_0)$

Decreasing Rate of Increase:

$$\frac{dY}{dt} = K_d (Z - Y) \qquad K_d = \frac{-\ln \frac{Z - Y_2}{Z - Y_1}}{t_2 - t_1} \qquad Y = Y_0 + (Z - Y_0)(1 - e^{-K_D(t - t_0)})$$

Fireflow (Q) based on population (P)

$$Q = 1020 P^{1/2} (1-0.01 P^{1/2})$$
 (Q in gpm, P in 1000s)

PHYSICAL AND CHEMICAL CONSTANTS

Avogadro's number	$N = 6.022 \times 10^{23} \text{ mol}^{-1}$
Elementary charge	$e = 1.602 \times 10^{-19} \text{C}$
Gas constant	$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
	$= 1.987 \text{ cal mol}^{-1} \text{ K}^{-1}$
	$= 0.08205 \text{ L atm mol}^{-1} \text{ K}^{-1}$
Planck's constant	$h = 6.626 \times 10^{-34} \mathrm{J/s}$
Boltzmann's constant	$\mathbf{k} = 1.381 \times 10^{-23} \mathrm{J K^{-1}}$
Faraday's constant	$F = 9.649 \times 10^4 \text{ C mol}^{-1}$
Speed of light	$c = 2.998 \times 10^8 \text{ m/s}^{-1}$
Vacuum permittivity	$\varepsilon_0 = 8.854 \times 10^{-12} \mathrm{J}^{-1} \mathrm{C}^2 \mathrm{m}^{-1}$
Earth's gravitation	$g = 9.806 \text{ m/s}^{-2}$

CONVERSION FACTORS

1 cal	= 4.184 joules (J)
1 eV/molecule	$= 96.485 \text{ kJ mol}^{-1}$
	$= 23.061 \text{ kcal mol}^{-1}$
1 wave number (cm ⁻¹)	$= 1.1970 \times 10^{-2} \text{ kJ mol}^{-1}$
1 erg	$= 10^{-10} \text{ kJ}$
1 atm	$= 1.01325 \times 10^5 \text{ Pa}$
1 Å	$= 10^{-10} \text{ m}$
1 L	$= 10^{-3} \text{ m}^3$

PROPERTIES OF WATER

T(°C)	ho. Density (kg · m ⁻³)	μ Viscosity $(kg \cdot m^{-1} \cdot s^{-1})$	σ, Surface Tension against Air (J·m ⁻²)	ε Dielectric Constant $(C \cdot V^{-1} \cdot m^{-1})$	pK_{w} . Ionization Constant (mol ² · L ⁻²)
()	999,868	0.001787	0.0756	88.28	14.9435
5	999.992	0.001519	0.0749	86.3	14.7338
10	999.726	0.001307	0.07422	84.4	14.5346
15	999.125	0.001139	0.07349	82.5	14.3463
20	998.228	0.001002	0.07275	80.7	14.1669
25	997.069	0.0008904	0.07197	78.85	13.9965
30	995.671	0.0007975	0.07118	77.1	13.8330

SI PREFIXES

Multiplication Factor	Prefix	Symbol	Multiplication Factor	Prefix	Symbol
1012	tera	Т	10-2	centi	с
10^{9}	giga	G	10^{-3}	milli	m
10^6	mega	M	10 6	micro	μ
. 103	kilo	k	109	nano	n
10^{2}	hecto	h	10^{-12}	pico	p
10^{1}	deka	da	10^{-15}	femto	ŕ
10^{-1}	deci	đ	10 - 18	atto	a