Updated: 11 December 2019

Print version

CEE 370

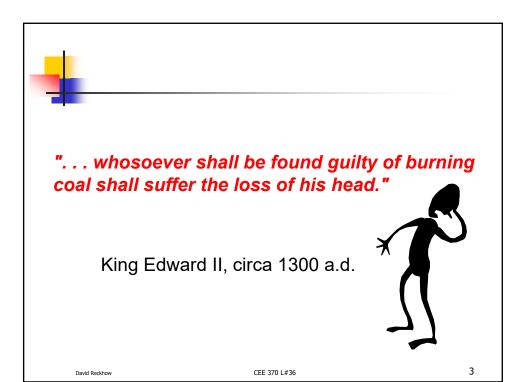
Environmental Engineering Principles

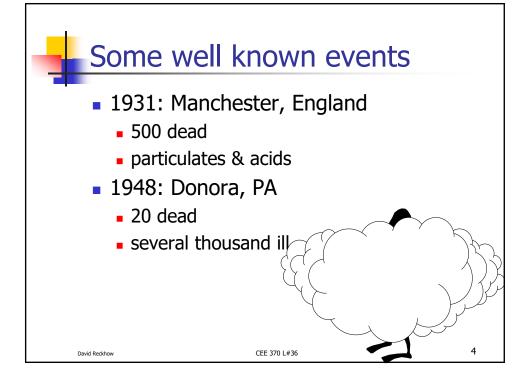
Lecture #36 Air Pollution I:

Air Quality & Pollutants

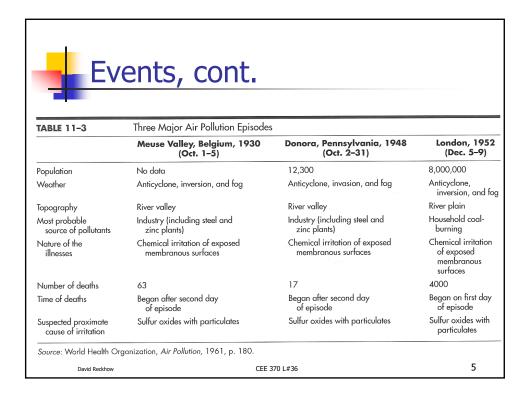
Reading: Mihelcic & Zimmerman, Chapt 11

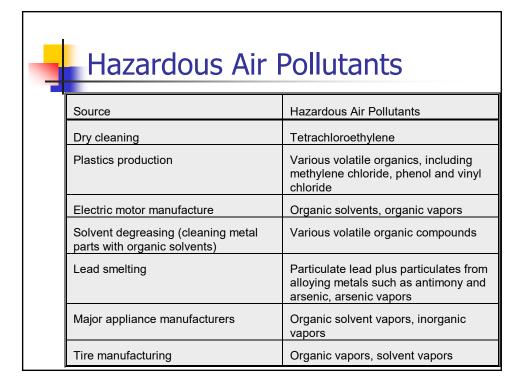
Reading: Davis & Cornwall, Chapt 7-1 to 7-5 Reading: Davis & Masten, Chapter 12-1 to 12-5

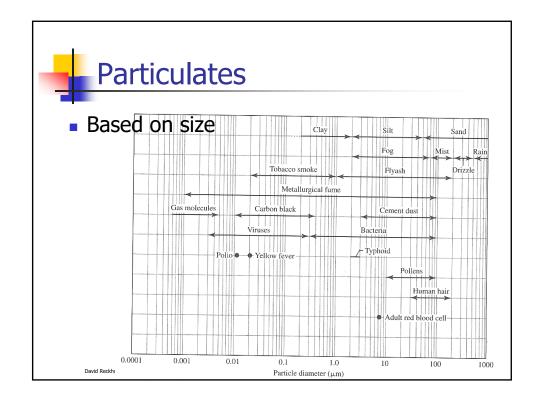

David Reckhow CEE 370 L#36

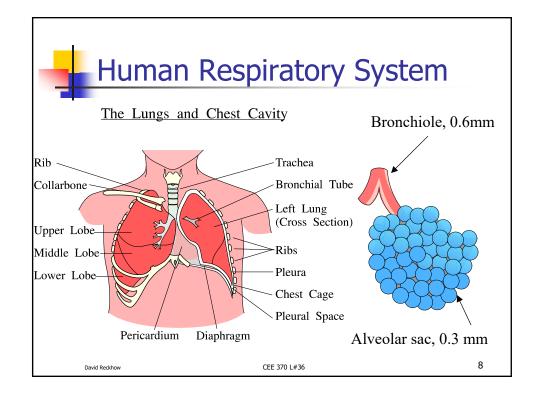


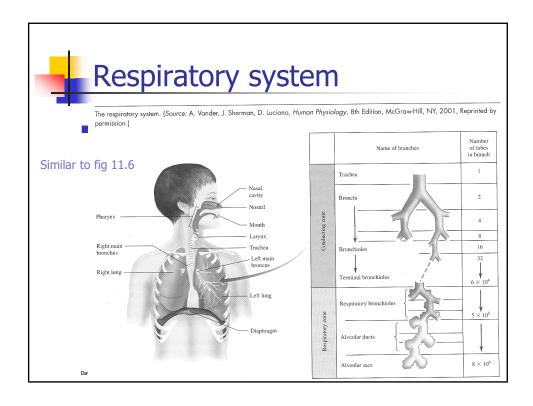
Air Pollution and Control

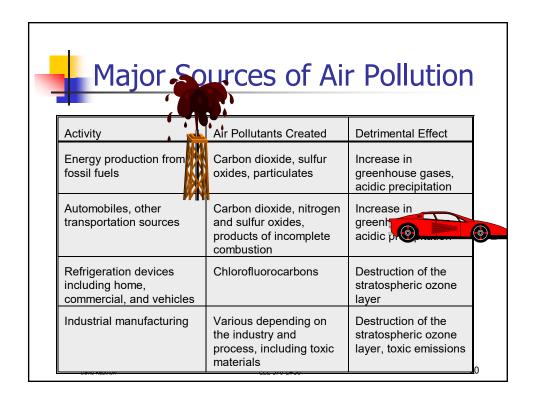

- Regulations
- Meteorology and Climatology
- Acidic Pollutants
- Particulate Pollutants
- Stratospheric Ozone Destruction
 - Effects of CFCs
- Greenhouse Pollutants
 - Global Warming
- Tropospheric Photochemical Pollutants
- Hazardous Pollutants
- Indoor Air Pollution

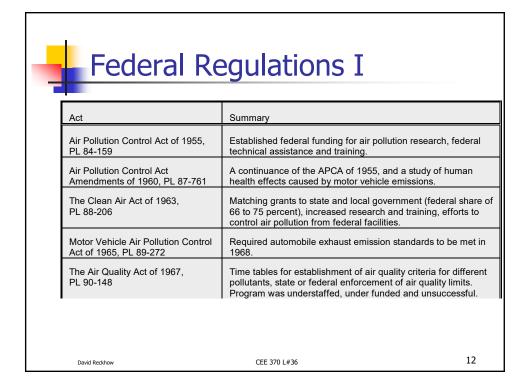

David Reckhow CEE 370 L#36






12/11/2019





Federal Regulations II

Act	Summary
The Clean Air Act Amendments of 1970, PL 91-604	The establishment of national ambient air quality standards for particulates, carbon monoxide, sulfur oxides, hydrocarbons, and others. National emission standards for existing and new facilities, fines and criminal penalties for intentional violation, new stricter automobile emission standards, additional research funding.
The Clean Air Amendments Act of 1977, PL 95-95	Continuance of the 1970 requirements, additional restrictions for "non-attainment areas."
The Clean Air Act of 1990, PL	A complete revamping of the air pollution control regulations, including compliance time tables (3 to 20 years) for major noncompliance areas. Tighter emission standards for vehicles, reformulated gasolines, air toxics requirements, acid rain controls, new permitting program with stiffer civil and criminal penalties.

ckhow CEE 370 L#36 13

Key Pollutants I

- Carbon Monoxide (CO)
 - Lethal @ 5000 ppm; some impact @ 20 ppm
 - Reacts with hemoglobin forming carboxyhemoglobin (COHb) which blocks Oxygen
- Hazardous Air Pollutants (HAPs)
 - Includes carcinogens: asbestos, arsenic, benzene, radionuclides
 - Others: beryllium, mercury

PFAS & many others

- Lead (Pb)
 - Cumulative poison with many routes of exposure
 - Anemia to brain damage and paralysis
- Nitrogen Dioxide (NO₂)
 - One of the NO_x gases
 - Causes pulmonary edema

David Reckhow CEE 370 L#36

Key Pollutants II

- Photochemical oxidants
 - Ozone and many others
 - Peroxyacetyl nitrate (PAN), acrolein, peroxybenzoyl nitrates (PBzN), aldehydes and NO_x
 - Especially affects those with chronic respiratory disease
- PM₁₀ and PM_{2.5}
 - Small particles up to 10 μm and 2.5 μm, respectively
 - Penetrate deep into lungs
 - Correlated with pneumonia, asthma, hospital admissions
- Sulfur oxides (SO_x)
 - Includes sulfur dioxide (SO2) and trioxide (SO3)
 - Synergistic effect with high particulat levels
 - Helps to bring SO_x deep into lungs

David Reckhow CEE 370 L#36 15

TABLE 11-1	National A	National Ambient Air Quality Standards (NAAQS)							
	Criteria	Standard	Concentration		Averaging Period or Method	Allowable Exceedances ^a			
Pollutant	Туре	(μg · m ⁻³)	(ppm)						
	CO	Primary	10,000	9	8-hour average	Once per year			
S		Primary	40,000	35	1-hour average	Once per year			
Standards	Lead	Primary and secondary	1.5		Maximum arithmetic mean measured over a calendar quarter				
<u>8</u>	NO_2	Primary and secondary	100	0.053	Annual arithmetic mean				
	Ozone	Primary and secondary	235	0.12	Maximum hourly average	Once per year			
<u>ro</u>	Ozone ^b	Primary and secondary	157	0.08	8-h average	c			
S	Particulate matter (PM ₁₀) ^d	Primary and secondary	150		24-h average	One day per year			
•		Primary and secondary	50		Annual arithmetic mean				
	(PM _{2.5}) ^b	Primary and secondary	65		24-h average	One day per year			
			15		Annual arithmetic mean				
	SO ₂	Primary	80	0.03	Annual arithmetic mean				
		Primary	365	0.14	Maximum 24-h concentration	Once per year			
	SO_2	Secondary	1300	0.5	Maximum 3-h	Once per year			
раую кескло	w		CEE 3/U L:	+ 3 0	concentration	10			

CAA of 1990

- Two regulatory categories
 - Primary ambient air quality standards
 - to protect human health
 - Secondary ambient air quality standards
 - to protect "human welfare" (the environment & infrastructure)
- Major new efforts
 - additional removal of sulfur and nitrogen oxides
 - phaseout of CFCs

David Reckhow

CEE 370 L#36

17

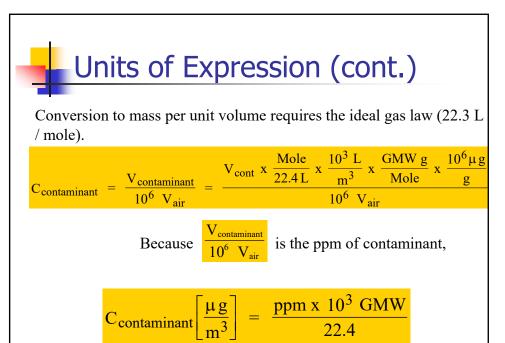
Units of Expression

- Typically μg/m³ (mass per volume) for gaseous, nongaseous, or particulate matter
- ppm (parts per million) is also used for gases

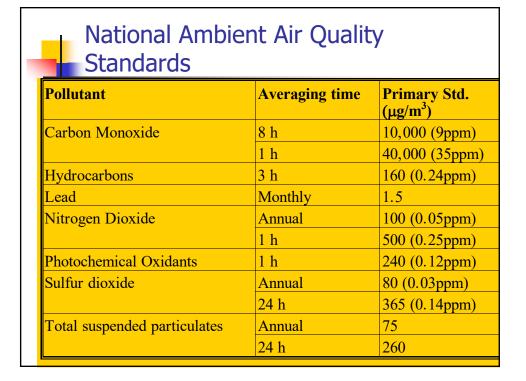
ppm =
$$\frac{\text{volume of contaminant}}{10^6 \text{ volumes of (air + contaminant)}}$$

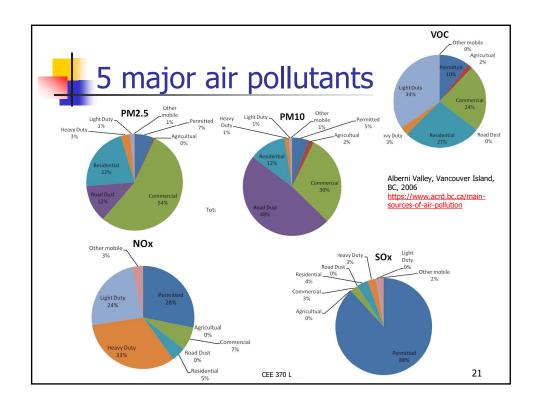
And this generally reduces to:

 $ppm = \frac{\text{volume of contaminant}}{10^6 \text{ volume of air}}$

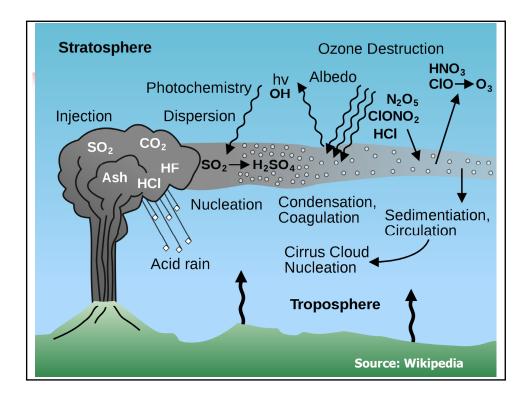

David Reckhow

CEE 370 L#36


18

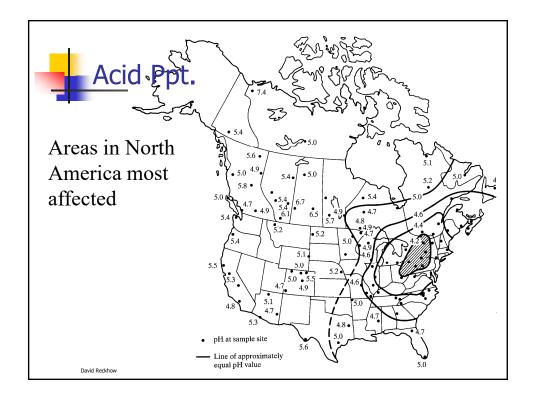

12/11/2019

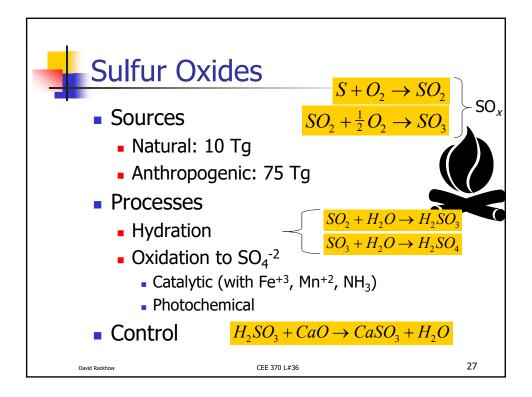
19

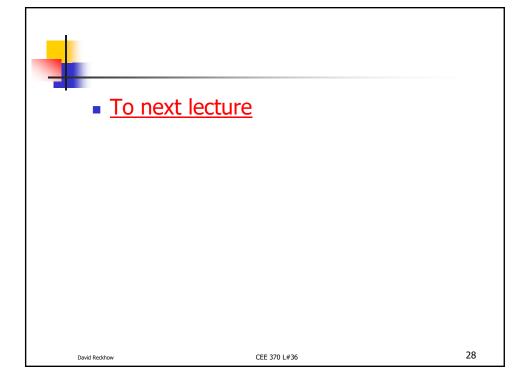


CEE 370 L#36

- Product of incomplete oxidation
 - Biological oxidation
 - Formation of methane, resulting in CO
 - Chemical combustion
 - Burning of fossil fuels
 - Anthropogenic sources account for most CO production
 - Discharge to atmosphere has been increasing
 - No change in levels, however
 - loss mechanisms are keeping up
 - Formation of CO2 by reaction with OH radicals
 - Removal by soil microorganisms
 - Loss to stratosphere


David Reckhow CEE 370 L#36




Acidic Air Pollutants

- Environmental Impacts
 - consumes alkalinity and lowers pH
 - may cause release of metals in water (Al) which can lead to toxicity
 - large areas of Northeast US are already affected
- Sources
 - Sulfur and nitrogen oxides that combine with water to form acids

David Reckhow CEE 370 L#36 25

