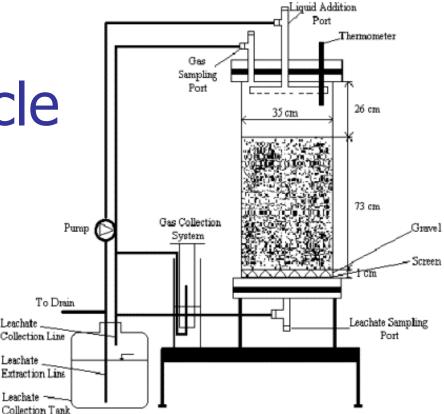
CEE 370 Environmental Engineering Principles

Lecture #34 Solid Waste II: Landfills <u>Reading: Mihelcic & Zimmerman, Chapt 10</u> <u>Reading: Davis & Cornwall, Chapt 9-4 to 9-6</u> <u>Reading: Davis & Masten, Chapter 13-7</u>

David Reckhow

CEE 370 L#34

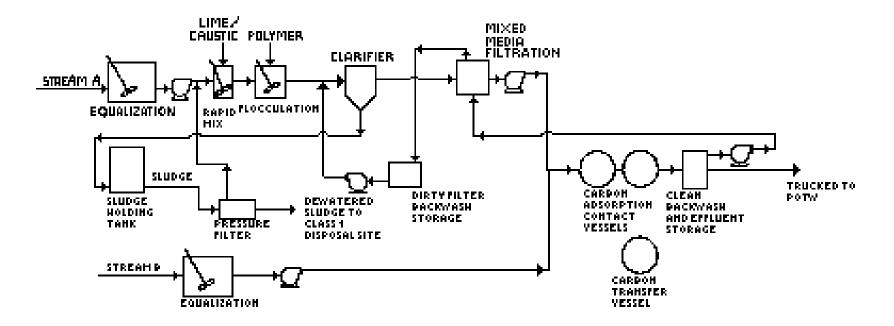
Landfilling


- The legal and controlled placement of wastes in the ground
- Dumping is illegal or uncontrolled
- Material undergoes chemical and biological changes
- Water is present which promotes biodegradation and carries away dissolved substances: Leachate
- Leachate collection and recirculation

Leachate Characteristics

Complex Organics	Constituent	Conc. Range, mg/L
	BOD ₅	9-55,000
\sum	COD	0-90,000
eimnle Argenice	Total solids	6-45,000
Simple Organics	TDS	0-42,000
	TSS	6-2,700
	Chloride	34-2,800
Acetic Acid	TKN	0-1,400
	Sulfate	1-1,800
	Phosphate	0-154
	Lead	0-5
CO2 and CH4	Copper	0-10
	рН	3.7-8.5
David Reckhow CEE 370 L#34		<u>j</u>

Leachate Recycle


- leachate recirculation in municipal solid waste landfills as an effective way to enhance microbial decomposition of biodegradable solid waste.
- With leachate recirculation, a landfill can
 - be used as a relatively controlled anaerobic filter to treat leachate
 - provide accelerated waste stabilization, and
 - reduce the volume of leachate by maximizing evaporative losses during recirculation
- In order to maximize waste stabilization, leachate recirculation frequency must be carefully selected.
 - If too much leachate is recirculated, problems such as saturation, ponding, and acidic conditions may occur.

 Leachate should be introduced slowly, since high flow rates may deplete buffering capacity and remove methanogens, increasing the flow rates and frequency of recirculation as gas production is established. Waste decomposition can be improved by an increase in the moisture flow, as a result of increased flushing and dilution of the inhibitory products.

Leachate Treatment

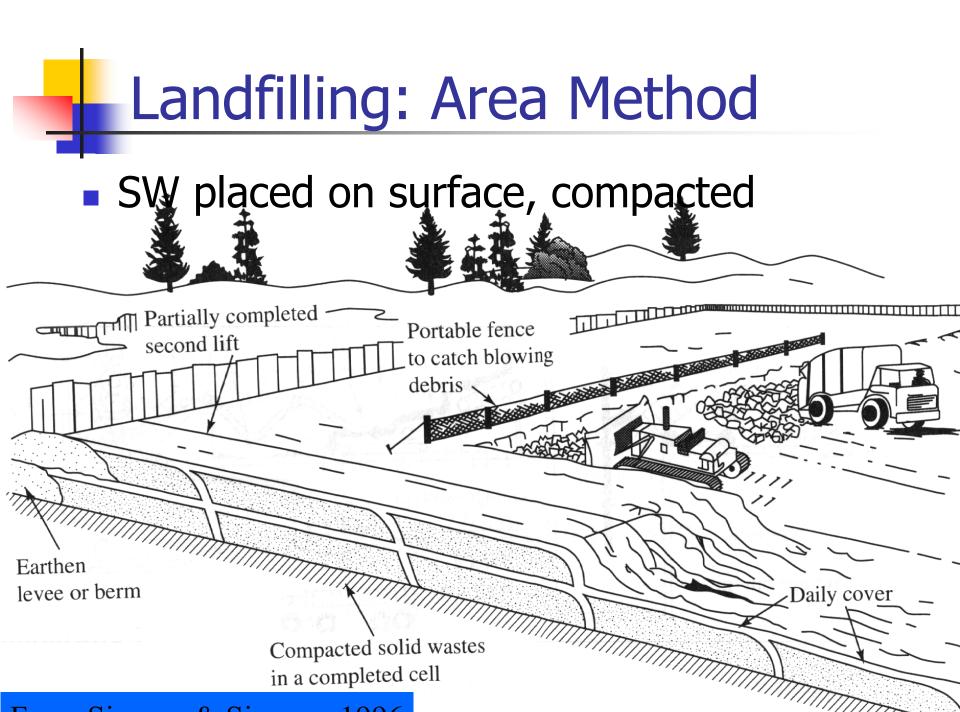
 A typical leachate treatment plant uses equalization, oxidation/reduction, precipitation/flocculation/sedimentation, neutralization, granular media filtration

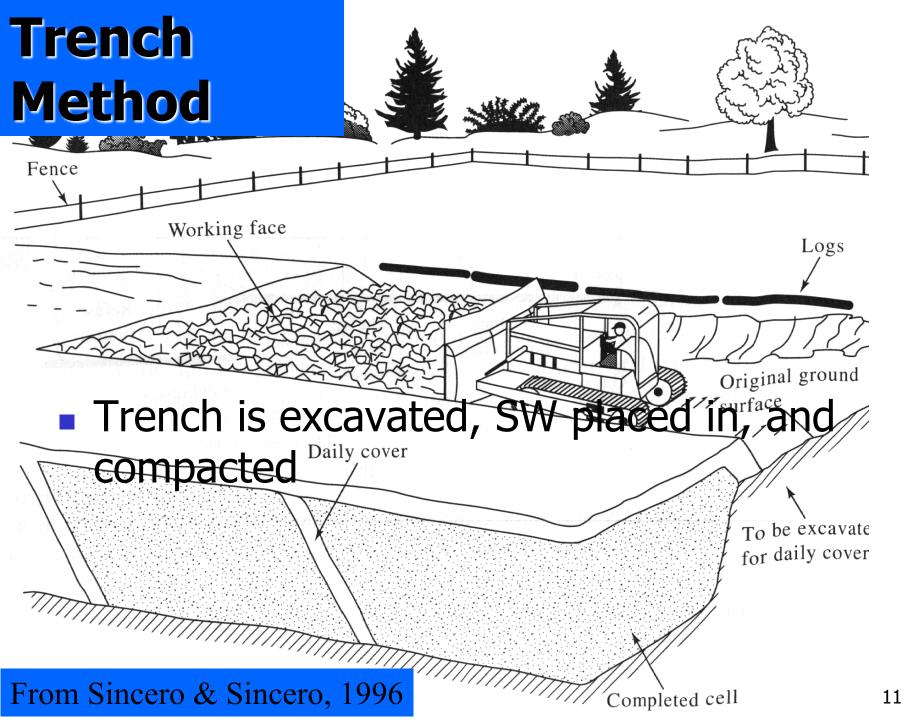
Siting Restrictions

The landfill disposal regulations provide the following restrictions on landfill location:

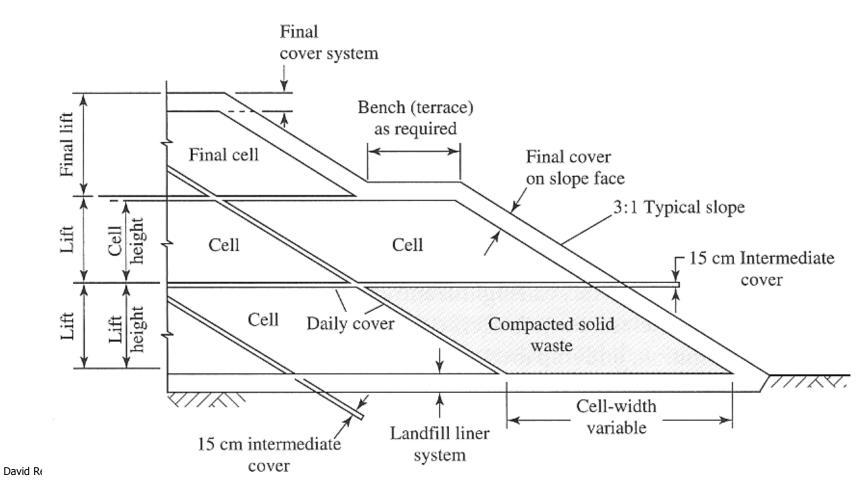
- Prohibit the placement of a landfill facility near an <u>airport</u> because of dangers from scavenging birds.
- Require the landfill to be located outside the 100 year <u>floodplain</u> or the landfill design must prevent the washout of solid waste during a 100 year flood.
- Prohibit the placement of a new landfill or expansion of an existing landfill into or on a <u>wetland</u>.
- Prohibit the placement of a landfill within 200 feet of an <u>earthquake</u> fault.
- Prohibit the placement of a landfill in an area with a high probability of a strong <u>earthquake</u>.
- Prohibit the placement of a landfill in an area with <u>unstable soil</u>.
- Require existing landfills which cannot meet the airport, floodplain, or unstable area requirements above, to close within five years. The state may grant a maximum of a two year extension.

Operational Requirements


- Exclusion of hazardous waste from the landfill.
- Provide at least six inches of daily soil cover over new solid waste placed in the landfill.
- Control disease vectors such as rodents and insects.
- Monitor methane concentrations in the landfill and buildings.
 (Methane is explosive when combined with the oxygen in air.)
- Elimination of most open burning.
- Control public access.
- Construct run-on and run-off controls for water.
- Meet water quality discharge requirements (NPDES) to surface water.
- Prohibit all liquid wastes except small quantities of household liquid wastes.
- Maintain records indicating compliance.


Design Requirements

- Synthetic membrane liner at least 30 mils thick
 - 1 mil is 0.001 inches
- Soil liner at least 2 ft. thick
- Hydraulic conductivity no more than 10⁻⁷ cm/s
- Other state-approved designs possible

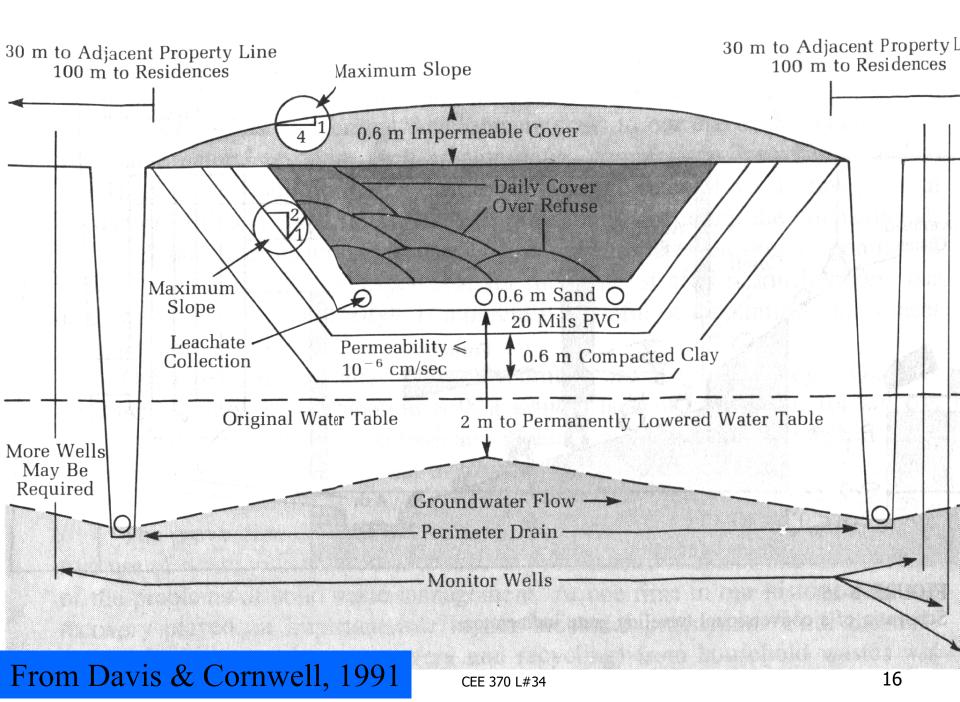

Solid Waste Disposal

- Sources
- Disposal Regulations
- Recycling
- Composting
- Collection
- Processing
- Landfilling
- Incineration

Leachate Composition

	Value (mg · L ⁻¹)					
	New Landfill (< 2 years)		Mature Landfill			
Constituent	Range	Typical	(>10 years)			
BOD ₅ (5-day biochemical oxygen demand)	2000-30,000	10,000	100–200			
TOC (total organic carbon)	1500-20,000	6000	80-160			
COD (chemical oxygen demand)	3000–60,000	18,000	100-500			
Total suspended solids	200-2000	500	100-400			
Organic nitrogen	10-800	200	80-120			
Ammonia nitrogen	10-800	200	20-40			
Nitrate	5–40	25	5–10			
Total phosphorus	5-100	30	5–10			
Ortho phosphorus	4–80	20	4–8			
Alkalinity as CaCO3	1000–10,000	3000	200-1000			
pH (no units)	4.5-7.5	6	6.6-7.5			
Total hardness as CaCO3	300-10,000	3500	200-500			
Calcium	200-3000	1000	100-400			
Magnesium	50-1500	250	50-200			
Potassium	200-1000	300	50-400			
Sodium	200-2500	500	100-200			
Chloride	200-3000	500	100-400			
Sulfate	50-1000	300	20–50			
Total iron	50-1200	60	20-200			

Not pure methane


TABLE 12-5	Typical Constituents Found in MSW Landfill Gas				
Component	Percent (dry volume basis)	Characteristic	Value		
Methane	45-60	Temperature (°C)	35–50		
Carbon dioxide	40–60	Specific gravity	1.02-1.05		
Nitrogen	2–5	Moisture content	Saturated		
Oxygen	0.1-1.0	High heating value (in kJ · m ⁻³)	16,000-20,000		
Sulfides, disulfides, mercaptans, etc.	0-1.0				
Ammonia	0.1-1.0				
Hydrogen	0–0.2				
Carbon monoxide	0-0.2				
Trace constituents	0.01–0.06				

 $_{\sim}$

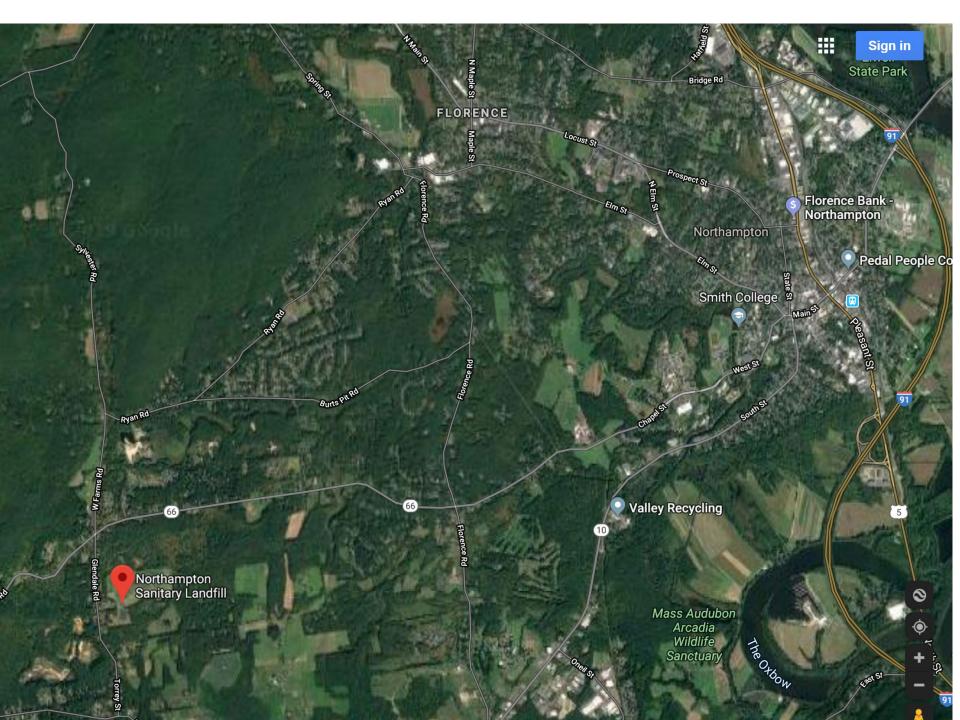
TABLE 12-6

Concentrations of Specified Air Contaminants Measured in Landfill Gasses (in ppb)

Compound	Landfill Site						
	Yolo Co.	City of Sacramento	Yuba Co.	El Dorado Co.	L.APacific (Ukiah)	City of Clovis	City of Willits
Vinyl chloride	6900	1850	4690	2200	<2	66,000	75
Benzene	1860	289	963	328	<2	895	<18
Ethylene dibromide	1270	<10	<50	<1	<1	<1	<0.5
Ethylene dichloride	nr	nr	nr	<20	0.2	<20	4
Methylene chloride	1400	54	4500	12,900	<1	41,000	<1
Perchloroethylene	5150	92	140	233	< 0.2	2850	8.1
Carbon tetrachloride	13	<5	<7	<5	< 0.2	<5	< 0.2
1,1,1-TCAª	1180	6.8	<60	3270	0.52	113	0.8
TCE ^b	1200	470	65	900	<0.6	895	8
Chloroform	350	<10	<5	120	<0.8	1200	<0.8
Methane	nr	nr	nr	nr	0.11%	17%	0.14%
Carbon dioxide	nr	nr	nr	nr	0.12%	24%	<0.1%
Oxygen	nr	nr	nr	nr	nr	10%	21%

Landfill siting

Northampton Sanitary Landfill


Sign in

 \odot

۲

Ň

Google

To next lecture