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CEE 370
Environmental Engineering 
Principles

Lecture #32
Wastewater Treatment III:

Process Modeling & Residuals
Reading M&Z: Chapter 9

Reading: Davis & Cornwall, Chapt 6-1 to 6-8
Reading: Davis & Masten, Chapter 11-11 to 11-12

Updated: 26 November 2019 Print version

http://www.ecs.umass.edu/cee/reckhow/courses/370/slides/370l32p.pdf
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Microbial Biomass in a CMFR
dm
dt

 =  (C Q )   (C Q )   r VA
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Aj j out A∑ ∑− −

CA

V
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Q0
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Q0

General Reactor 
mass balance

But with CMFRs we have a 
single outlet concentration 
(CA) and usually a single 

inlet flow as well
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Batch Microbial Growth
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Because there isn’t any flow in a batch reactor:

A
A
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And:

Batch reactors are usually filled, 
allowed to react, then emptied 

for the next batch

General Reactor 
mass balance

0 0

X kX
For 1st order 

biomass 
growth
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Batch Microbial Growth
 Observed behavior

Time

Lag

Stationary

Death

Exponential
Growth

Covered in 
lecture #17
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Exponential Growth model

where,
X = concentration of microorganisms at 

time t
t = time

µ = proportionality constant or specific 
growth rate, [time─1]

dX/dt = microbial growth rate, [mass per 
volume-time]

N

r
t

dN/dt

D&M Text

X
dt
dX

gr

µ≡







Covered in 
lecture #17
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Exp. Growth (cont.)

ln X
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Covered in 
lecture #17
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Substrate-limited Growth
 Also known as resource-limited growth

 THE MONOD MODEL

where, 
µmax = maximum specific growth rate, [day-1]
S = concentration of limiting substrate, [mg/L]
Ks = Monod or half-velocity constant, or half

saturation coefficient, [mg/L]

SK
SXX

dt
dX

Sgr +
=≡








maxµµ
SK

S

S +
= maxµµ and
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Monod Kinetics

0.5*µm

KS

Covered in 
lecture #17
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Substrate Utilization & Yield
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H&H, Fig 11-38,  pp.406

 Related to growth by Y, the yield coefficient
 Mass of cells produced

per mass of substrate utilized

 Just pertains to cell growth
dt

dS
dt

dX

S
XY =
∆
∆

≡

dt
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Microbial Growth

 Monod kinetics in a chemostat (batch reactor)

 Where
 dS/dt = rsu = actual substrate utilization rate
 k = maximum substrate utilization rate = μmax/Y
 S = concentration of substrate (Se in H&H)
 KS = half-saturation constant
 Y = cell yield = dX/dS
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Death
 Bacterial cells also die at a characteristic 

first order rate with a rate constant, k

 This occurs at all times, and is 
independent of the substrate 
concentration

David Reckhow CEE 370 L#32 11
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Overall model: chemostat

 Combining growth and death, we have:

 And in terms of substrate utilization
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See: M&Z equ 9.3



Activated Sludge Flow Schematic
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Aeration
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V,X
Settling
Tank

Xo
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X
S

Xe
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 Conventional 

Return activated sludge

Waste activated sludge
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Q+ Qr



Efficiency & HRT

 Efficiency of BOD removal

 Hydraulic Retention Time, HRT (Aeration Time) 
 Same as retention time in DWT (tR)

 Actual HRT is a bit different
 Isn’t used as much in design
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SRT – solids retention time & R

 SRT: Primary operation and design parameter
 How long does biomass stay in system

 Typically equals 5-15 days
 Recycle Ratio

 Values of 0.25-1.0 are typical
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See: M&Z equ 9.10



F:M Ratio and volumetric loading

 Food-to-Microorganism Ratio (F/M)

 Typical values are 0.2-0.6 in complete mixed AS
 BOD volumetric Loading

 Typically 50-120 lb BOD/day/1000ft3 tank volume
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M&Z equ 9.16



Act. Sludge: Biomass Model

 Steady State mass balance on biomass

 Incorporating the chemostat model gets:

 And simplifying

 Finally, we recognize that the amount of solids entering with the WW (i.e., 
Xo) and leaving in the treated effluent (i.e., Xe) is quite small and can be 
neglected
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Biomass Model II
 So it becomes

 And rearranging
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

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Act. Sludge: Substrate Model
 Steady state mass balance on substrate

 Substituting and noting that Qe=Q-Qw

 And further simplifying
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Merging the biomass & substrate models 

 If we divide the previous equation by V and X

 Multiply both sides by Y

 Now insert the LH term into the
earlier equation based on biomass
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Combined model II
 Now recognize that Q/V is the reciprocal of 

the HRT
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Question
 All else being equal, as SRT goes up:

1. Settleability goes down
2. F/M goes down
3. Waste sludge return ratio must go down
4. Endogenous respiration becomes less 

important
5. Sludge yield increases
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Aeration: Loadings
 Food-to-Microorganism 

Ratio (F/M)

 Sludge Age or mean cell 
residence time (ɵc)

 Where
 Q=WW flow
 V=volume of aeration tank
 X=MLVSS=mixed liquor 

volatile suspended solids 
(biomass concentration)

 Xe=VSSe = suspended solids in 
wastewater effluent

 XW=VSSw = suspended solids 
in waste sludge

 Qw = flow of waste sludge
 SS is sometimes used instead 

of VSS
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Operating Criteria
 Loading, biomass, retention time, etc
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H&H, Table11-4,  pp.395
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Activated Sludge

 Mixed liquor
 Return Activated sludge

1. Surface aerators
2. Bubble diffusers
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CEE 370
Environmental Engineering 
Principles

Lecture #32b
Wastewater Treatment IIIb:
Process Modeling & Residuals

Reading: M&Z Chapter 9.11
Other Reading: Davis & Cornwall, Chapt 6-1 to 6-8 and Davis & Masten, 

Chapter 11-11 to 11-12

Updated: 26 November 2019
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Anaerobic Digester Problem

Anaerobic digesters are commonly used in wastewater 
treatment.  The biological process produces both 
carbon dioxide and methane gases.  A laboratory 
worker plans to make a "synthetic" digester gas.  
There is currently 2 L of methane gas at 1.5 atm and 1 
L of carbon dioxide gas at 1 atm in the lab.  If these 
two samples are mixed in a 4 L tank, what will be the 
partial pressures of the individual gases?  The total 
pressure?

Example 4.4 from Ray
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t CH COP  =  P  +  P  =  1 atm4 2

2P  =  1 atm 
1 L
4  L

 =  0.25 atm





2P  =  1.5 atm 
2  L
4  L

 =  0.75 atm





Solution to Anaerobic Digester Problem

First, we must find the partial pressures of the 
individual gases using the ideal gas law:

1 1 2 2P V  =  nRT =  P V
2 1

1

2
P  =  P

V
V







For methane gas

For carbon dioxide gas:

And the total is:

or
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Solids Balance

SRT
XV

Q Xw u
= =

mass of organisms in tank
mass of organisms removed per day
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V
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Activated Sludge (WAS)

Aeration Tank

Qw

XuQR

Q0 Q0-Qw
Xe

V, XX0

SRT=solids retention time
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Solids Mass Balance
 Consider aeration tank and clarifier together

 Biomass in + biomass produced due to growth = biomass out

 Now using the combined growth equation without limitation to 
carrying capacity:

 Combining and assuming X0 and Xe to be negligible:

( ) wwew XQXQQ
dt
dXVXQ +−=+ 000
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S
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+
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We will cover 
this in CEE 471
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Substrate Mass Balance
 Consider aeration tank and clarifier together

 Substrate in + substrate consumed by biomass = substrate out

 Now using the combined substrate utilization equation without 
limitation to carrying capacity:

 Combining and rearranging:

( ) SQSQQ
dt
dSVSQ ww +−=+ 000

( )SS
VX

YQ
SK
S

s

−=
+ 0

0maxµ

Note that effluent and 
waste sludge substrate 

concentrations are 
considered the same
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


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






+

−= max
1 µ

We cover this in 
detail in CEE 471
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Combined Mass Balances
 In summary the solids and substrate mass 

balance equations are:

 These can be easily combined (left hand 
terms are the same):

d
ww

s

k
VX

XQ
SK
S

+=
+

maxµ ( )SS
VX

YQ
SK
S

s

−=
+ 0

0maxµ

( ) d
ww kSS

VX
YQ

VX
XQ

−−= 0
0

cΘ
1

The mean cell residence time, or sludge age 

We cover this in 
CEE 471
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Sludge Treatment

 Depends on type of 
sludge

 Typical process train
 Thickening or 

dewatering
 Conditioning
 Stabilization (usually 

for wastewater)
 Disposal

 Nonmechanical 
methods
 Lagoons
 Sand-drying beds
 Freeze treatment

 Mechanical methods
 Centrifugation
 Vacuum filtration
 Belt filter press
 Plate filters

See also Lecture #30 
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 Centrifuge

From Lecture #30 
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Vacuum Filter

From Lecture #30 
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Belt Filter Press

From Lecture #30 
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 To next lecture

http://www.ecs.umass.edu/cee/reckhow/courses/370/slides/370l33.pdf
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