CEE 370 Environmental Engineering Principles

Lecture #32

Wastewater Treatment III:

Process Modeling & Residuals

Reading M&Z: Chapter 9

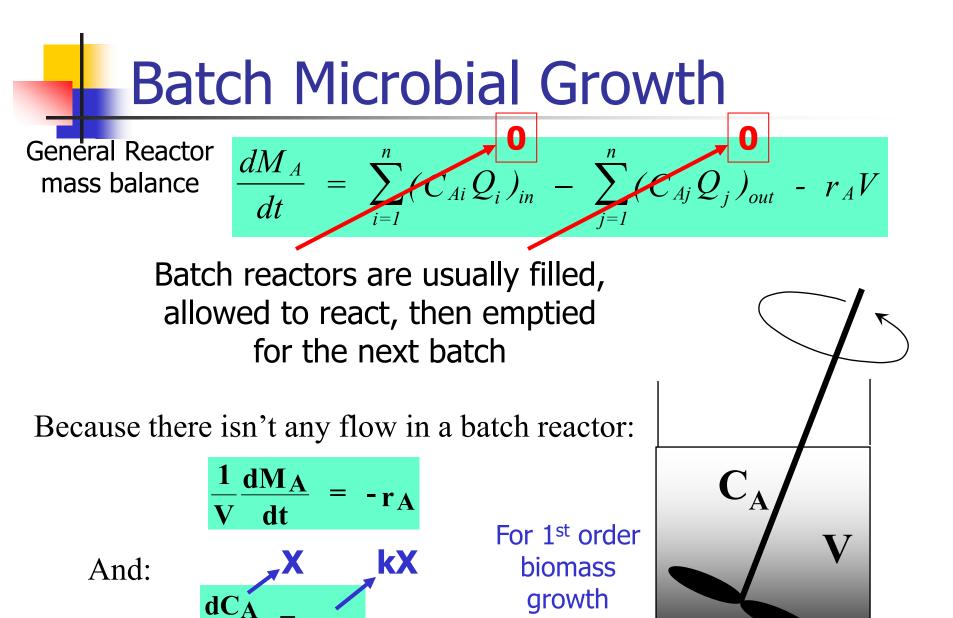
Reading: Davis & Cornwall, Chapt 6-1 to 6-8 Reading: Davis & Masten, Chapter 11-11 to 11-12

David Reckhow

CEE 370 L#32

Microbial Biomass in a CMFR

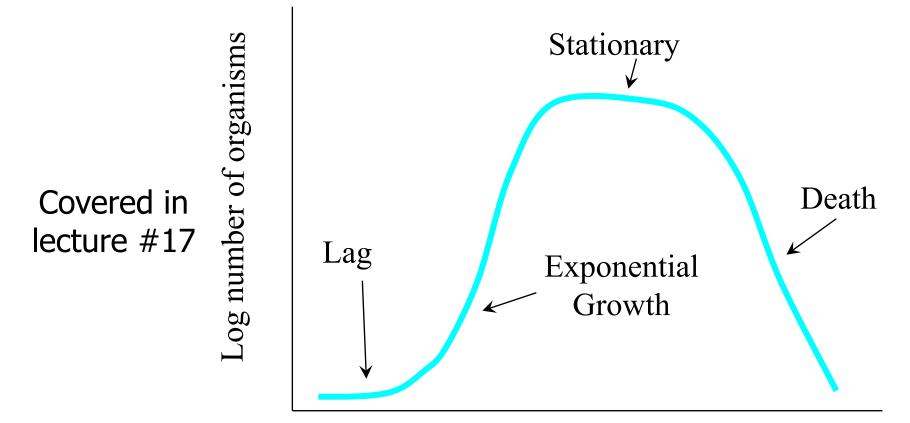
General Reactor mass balance


$$\frac{dm_A}{dt} = \sum_{i=1}^n (C_{Ai}Q_i)_{in} - \sum_{j=1}^n (C_{Aj}Q_j)_{out} - r_A V$$

But with CMFRs we have a single outlet concentration (C_A) and usually a single inlet flow as well

 C_{A0}

 Q_0


e a ion le
$$C_A$$
 C_A Q_0

dt

Batch Microbial Growth

Observed behavior

Exponential Growth model

 $\left(\frac{dX}{dt}\right)_{ar} \equiv \mu X$

Covered in lecture #17

D&M Text

Exp. Growth (cont.)

Covered in lecture #17

$$\left(\frac{dX}{dt}\right)_{gr} \equiv \mu X$$
 or $\left(\frac{dX}{X}\right)_{gr} \equiv \mu dt$

$$\ln\left(\frac{X}{X_0}\right) = \mu t$$

$$\mathbf{X} = \mathbf{X}_{\mathbf{0}} \mathbf{e}^{\mathbf{\mu} \mathbf{t}}$$

Substrate-limited Growth

Also known as resource-limited growth THE MONOD MODEL

$$\mu = \mu_{\max} \frac{S}{K_S + S}$$
 and $\left(\frac{dX}{dt}\right)_{gr} \equiv \mu X = \mu_{\max} \frac{SX}{K_S + S}$

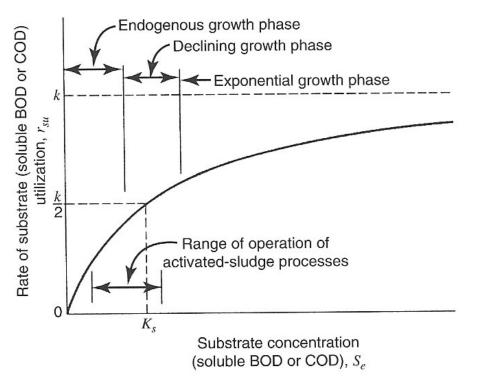
<u>where</u>,

μ_{max}	=
S	=
K _s	=

maximum specific growth rate, [day⁻¹] concentration of limiting substrate, [mg/L] Monod or half-velocity constant, or half saturation coefficient, [mg/L]

Monod Kinetics Covered in **Monod Equation** lecture #17 **Specific Growth Rate** 1.6 1.4 Specific Growth Rate, , /day 1.2 1 0.5*µ_m 0.8 0.6 0.4 K_s 0.2 0 0 50 100 150 200 250 300 350 400 Substrate Concentration, mg/L

Substrate Utilization & Yield


- Related to growth by Y, the yield coefficient
 - Mass of cells produced per mass of substrate utilized

H&H, Fig 11-38, pp.406

$$Y \equiv \frac{\Delta X}{\Delta S} = \frac{\frac{dX}{dt}}{\frac{dS}{dt}}$$

Just pertains to cell growth

$$\left(\frac{dX}{dt}\right)_{gr} = Y\frac{dS}{dt}$$

$$\left(\frac{dX}{dt}\right)_{gr} = Y\frac{dS}{dt}$$

Monod kinetics in a chemostat (batch reactor)

Where

- $r_{su} = k \frac{XS_e}{K_s + S_e}$ • dS/dt = r_{su} = actual substrate utilization rate
- k = maximum substrate utilization rate = μ_{max}/Y
- S = concentration of substrate (S_e in H&H)
- $K_s =$ half-saturation constant

& Divide by Y

 $\left(\frac{dX}{dt}\right)_{gr} \equiv \mu X = \mu_{\max} \frac{SX}{K_{S} + S} \xrightarrow{\text{Substitute for dS}} \frac{dS}{dt} = \frac{\mu_{\max}}{Y} \frac{XS}{K_{S} + S}$

 Bacterial cells also die at a characteristic first order rate with a rate constant, k

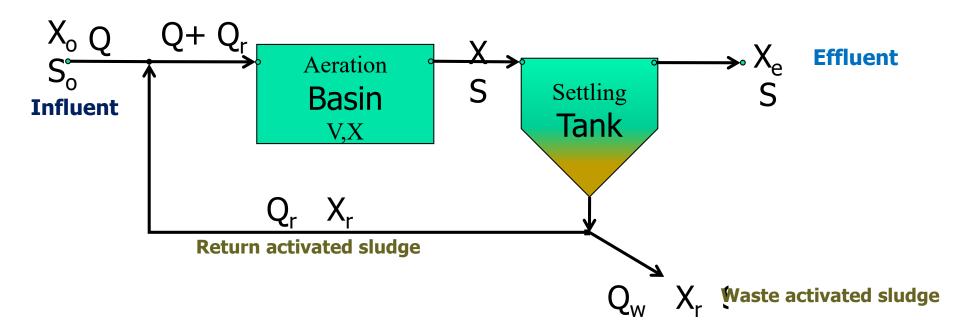
$$\left(\frac{dX}{dt}\right)_d = -k_d X$$

This occurs at all times, and is independent of the substrate concentration

Overall model: chemostat

Combining growth and death, we have:

 $\left(\frac{dX}{dt}\right)_{nat} = \left(\frac{dX}{dt}\right)_{at} + \left(\frac{dX}{dt}\right)_{d}$ $= \mu_{\max} \frac{SX}{K_{s} + S} - k_{d} X$ See: M&Z equ 9.3


And in terms of substrate utilization

$$\left(\frac{dX}{dt}\right)_{net} = Y\left(\frac{dS}{dt}\right) - k_d X$$

 $Y \equiv \left(\frac{dX}{dt}\right)_{\rm err} \div \frac{dS}{dt}$

Activated Sludge Flow Schematic

Conventional

Efficiency of BOD removal

$$E = \frac{(S_o - S)100\%}{S_o}$$

Hydraulic Retention Time, HRT (Aeration Time)

Same as retention time in DWT (t_R)

- Actual HRT is a bit different
 - Isn't used as much in design

$$\theta = \frac{V}{Q}$$

$$\theta_{act} = \frac{V}{Q + Q_R}$$

SRT – solids retention time & R

SRT: Primary operation and design parameter
 How long does biomass stay in system

 $\theta_{c} = \frac{biomass~in~tank}{rate~of~biomass~leaving~system}$

$$\theta_{c} = \frac{XV}{(Q - Q_{w})X_{e} + Q_{w}X_{r}} \approx \frac{XV}{Q_{w}X_{r}}$$

See: M&Z equ 9.10

- Typically equals 5-15 days
- Recycle Ratio $R = \frac{Q_r}{Q}$
 - Values of 0.25-1.0 are typical

F:M Ratio and volumetric loading

Food-to-Microorganism Ratio (F/M)

 $\frac{F}{M} = \frac{food \, supplied \, per \, day}{biomass \, in \, tank}$

biomass in tank

$$\frac{F}{M} = \frac{QS_o}{XV}$$

 $\frac{F}{M} = \frac{Q * BOD}{V * X}$

M&Z equ 9.16

 Typical values are 0.2-0.6 in complete mixed AS BOD volumetric Loading

$$Loading = \frac{QS_o}{V}$$

Typically 50-120 lb BOD/day/1000ft³ tank volume

Act. Sludge: Biomass Model

Steady State mass balance on biomass

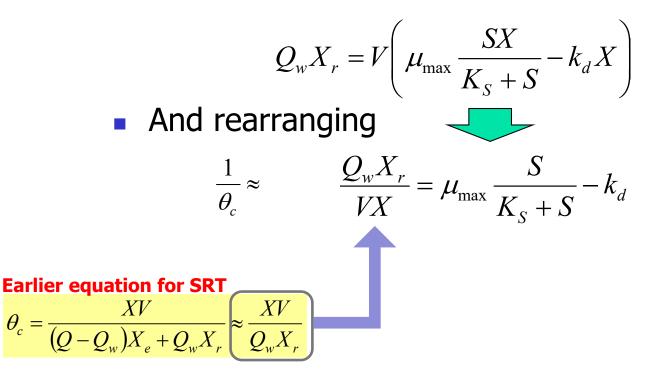
$$V\frac{dX}{dt} = 0 = QX_o - Q_e X_e - Q_w X_r + V\left(\frac{dX}{dt}\right)_{batch}$$

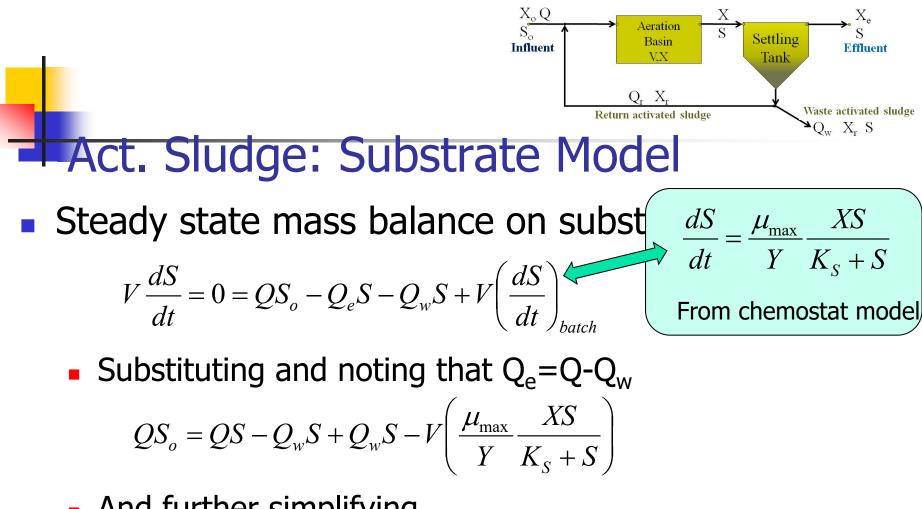
Incorporating the chemostat model gets:

$$V\frac{dX}{dt} = 0 = QX_o - Q_eX_e - Q_wX_r + V\left(\mu_{\max}\frac{SX}{K_s + S} - k_dX\right)$$

And simplifying

$$-QX_o + Q_e X_e + Q_w X_r = V \left(\mu_{\max} \frac{SX}{K_s + S} - k_d X\right)$$


Finally, we recognize that the amount of solids entering with the WW (i.e., X_o) and leaving in the treated effluent (i.e., X_e) is quite small and can be neglected


 $= \mu_{\max} \frac{SX}{K_S + S} - k_d X$ From chemostat model

 $\left(\left(\frac{dX}{dt}\right)_{not} = \left(\frac{dX}{dt}\right)_{ar} + \left(\frac{dX}{dt}\right)_{d}$

So it becomes

And further simplifying

$$Q(S_o - S) = V\left(\frac{\mu_{\max}}{Y} \frac{XS}{K_s + S}\right)$$

Merging the biomass & substrate models

If we divide the previous equation by V and X

$$\frac{Q(S_o - S)}{VX} = \frac{\mu_{\max}}{Y} \frac{S}{K_s + S}$$

$$Q(S_o - S) = V\left(\frac{\mu_{\max}}{Y} \frac{XS}{K_s + S}\right)$$

• Multiply both sides by Y $\frac{YQ(S_o - S)}{VX} = \mu_{\max} \frac{S}{K_S + S}$

M&Z equ 9.8

 Now insert the LH term into the earlier equation based on biomass

$$\frac{1}{\Theta_c} = \frac{Q_w X_r}{VX} = \frac{YQ(S_o - S)}{VX} - k_d$$

$$\implies \frac{1}{\theta_c} = \frac{Q_w X_r}{V X} = \mu_{\max} \frac{S}{K_s + S} - k_d$$

M&Z equ 9.9

Combined model II

 Now recognize that Q/V is the reciprocal of the HRT

$$\frac{1}{\theta_c} = \frac{1}{\theta} \frac{Y(S_o - S)}{X} - k_d$$

Question

- All else being equal, as SRT goes up:
 - 1. Settleability goes down
 - 2. F/M goes down
 - 3. Waste sludge return ratio must go down
 - Endogenous respiration becomes less important
 - 5. Sludge yield increases

Aeration: Loadings

Food-to-Microorganism
 Ratio (F/M)

$$\frac{F}{M} = \frac{Q * BOD}{V * X}$$

 Sludge Age or mean cell residence time (θ_c)

$$\theta_{c} = \frac{VX}{\left(X_{e}Q_{e}\right) + \left(X_{W}Q_{W}\right)}$$
$$\approx \frac{VX}{X_{W}Q_{W}}$$

Where

- Q=WW flow
- V=volume of aeration tank
- X=MLVSS=mixed liquor volatile suspended solids (biomass concentration)
- X_e=VSS_e = suspended solids in wastewater effluent
- X_w=VSS_w = suspended solids in waste sludge
- Q_w = flow of waste sludge
- SS is sometimes used instead of VSS

Operating Criteria

Loading, biomass, retention time, etc

H&H, Table11-4, pp.395

TABLE 11-4

Summary of Loadings and Operational Parameters for Aeration Processes

Process	BOD LOADING (Ib BOD/day per 1000 cu ft)ª	MLSS (mg/l)	F/M Ratio (Ib BOD/day per Ib MLSS) ^b	Sludge Age (days)	Aeration Period (hr)	Return Sludge Rates (percent)	BOD Removal Efficiency (percent)
Conventional	20 to 40	1000 to 3000	0.2 to 0.5	5 to 15	4.0 to 7.5	20 to 40	80 to 90
Step aeration	40 to 60	1500 to 3500	0.2 to 0.5	5 to 15	4.0 to 7.0	30 to 50	80 to 90
Extended aeration	10 to 20	2000 to 8000	0.05 to 0.2	20 and up	20 to 30	50 to 100	85 to 95
High-purity oxygen	120 and up	4000 to 8000	0.6 to 1.5	3 to 10	1.0 to 3.0	30 to 50	80 to 90

 a I.0 lb/1000 cu ft/day = 16.0 g/m³ · d

^bI.0 lb/day/lb MLSS = $1.0 \text{ g/d} \cdot \text{g}$ MLSS

Activated Sludge

- Mixed liquor
- Return Activated sludge

Surface aerators =
 Bubble diffusers

CEE 370 Environmental Engineering Principles

Lecture #32b Wastewater Treatment IIIb:

Process Modeling & Residuals

Reading: M&Z Chapter 9.11

Other Reading: Davis & Cornwall, Chapt 6-1 to 6-8 and Davis & Masten, Chapter 11-11 to 11-12

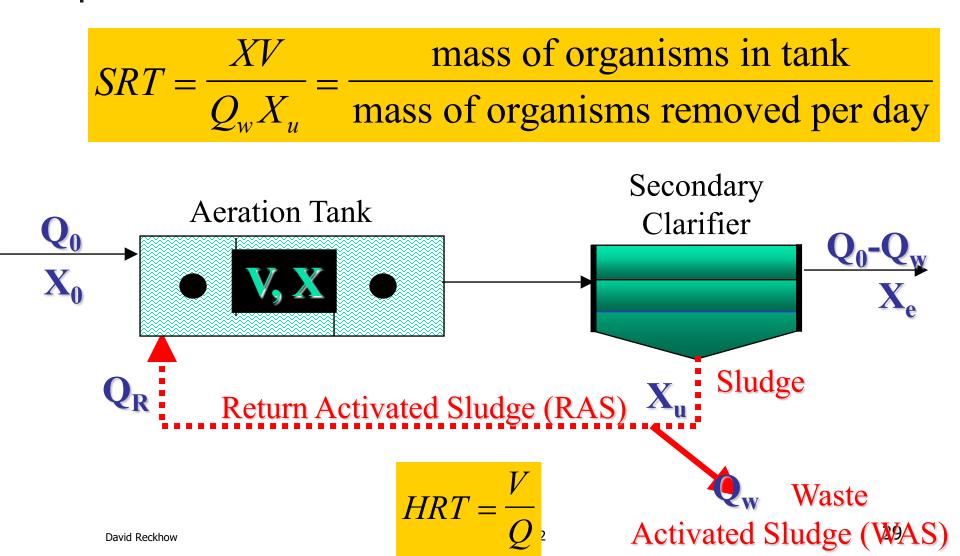
David Reckhow

CEE 370 L#32

Anaerobic Digester Problem

Anaerobic digesters are commonly used in wastewater treatment. The biological process produces both carbon dioxide and methane gases. A laboratory worker plans to make a "synthetic" digester gas. There is currently 2 L of methane gas at 1.5 atm and 1 L of carbon dioxide gas at 1 atm in the lab. If these two samples are mixed in a 4 L tank, what will be the partial pressures of the individual gases? The total pressure?

Example 4.4 from Ray


Solution to Anaerobic Digester Problem

First, we must find the partial pressures of the individual gases using the ideal gas law:

 $\mathbf{P}_1 \mathbf{V}_1 = \mathbf{n} \mathbf{R} \mathbf{T} = \mathbf{P}_2 \mathbf{V}_2$ or $\mathbf{P}_2 = \mathbf{P}_1$ $P_2 = 1.5 \text{ atm} \left[\frac{2}{4} \right]$ = 0.75 atm For methane gas $P_2 = 1 \text{ atm} \left[\frac{1}{1} \frac{L}{L} \right] = 0.25 \text{ atm}$ For carbon dioxide gas: $P_t = P_{CH_4} + P_{CO_2} = 1 \text{ atm}$ And the total is:

SRT=solids retention time

Solids Balance

Solids Mass Balance

- Consider aeration tank and clarifier together
 - Biomass in + biomass produced due to growth = biomass out

$$Q_0 X_0 + V \frac{dX}{dt} = (Q_0 - Q_w) X_e + Q_w X_w$$

Now using the combined growth equation without limitation to carrying capacity:

$$\frac{dX}{dt} = \left[\mu_{\max}\left(\frac{S}{K_s + S}\right) - k_d\right]X$$

Combining and assuming X₀ and X_e to be negligible:

$$\frac{\mu_{\max}S}{K_s + S} = \frac{Q_w X_w}{VX} + k_d$$

We cover this in detail in CEE 471

Substrate Mass Balance

- Consider aeration tank and clarifier together
 - Substrate in + substrate consumed by biomass = substrate out

$$Q_0 S_0 + V \frac{dS}{dt} = (Q_0 - Q_w)S + Q_w S$$

Note that effluent and waste sludge substrate concentrations are considered the same

Now using the combined substrate utilization equation without limitation to carrying capacity:

$$\frac{dS}{dt} = -\frac{1}{Y} \left[\mu_{\max} \left(\frac{S}{K_s + S} \right) - k_d \right] X$$

Combining and rearranging:

$$\frac{\mu_{\max}S}{K_s + S} = \frac{Q_0Y}{VX} \left(S_0 - S\right)$$

CEE 370 L#32

Combined Mass Balances

In summary the solids and substrate mass balance equations are:

$$\frac{\mu_{\max}S}{K_s + S} = \frac{Q_w X_w}{VX} + k_d$$

$$\frac{\mu_{\max}S}{K_s + S} = \frac{Q_0Y}{VX} \left(S_0 - S\right)$$

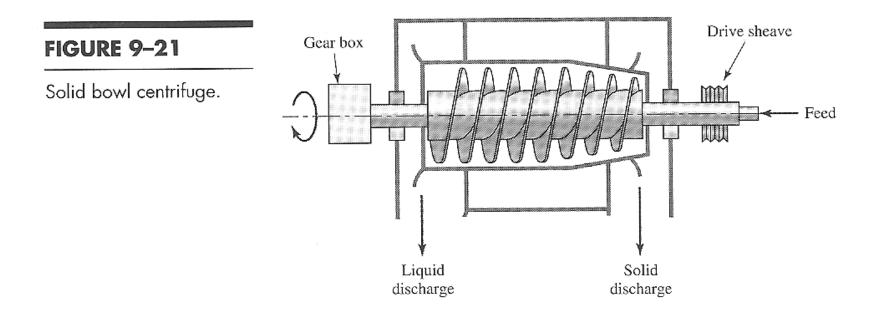
We cover this in

CFF 471

These can be easily combined (left hand terms are the same):

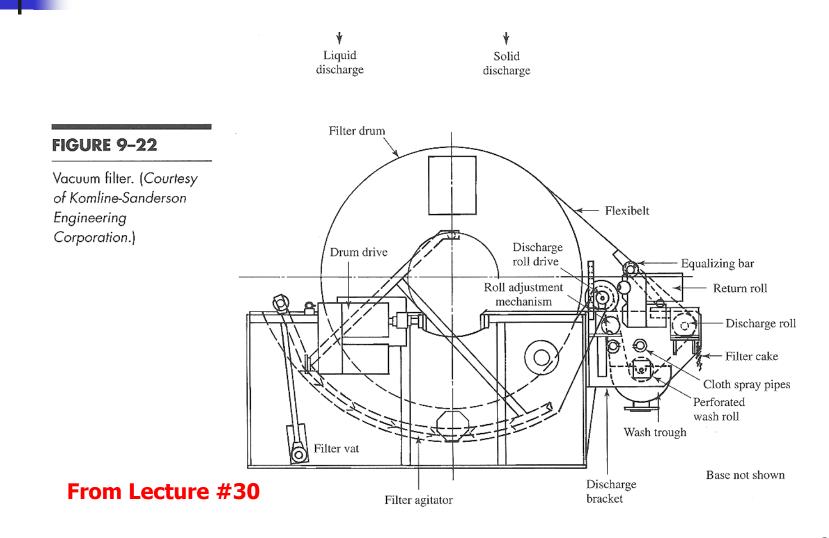
$$\frac{Q_w X_w}{VX} = \frac{Q_0 Y}{VX} (S_0 - S) - k_d$$

$$\frac{1}{\Theta_c}$$
The mean cell residence time, or sludge age

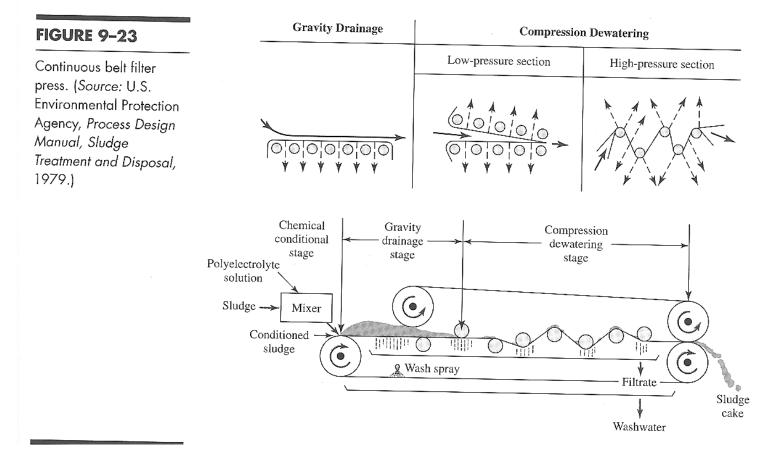

Sludge Treatment

- Depends on type of sludge
- Typical process train
 - Thickening or dewatering
 - Conditioning
 - Stabilization (usually for wastewater)
 - Disposal

See also Lecture #30


- Nonmechanical methods
 - Lagoons
 - Sand-drying beds
 - Freeze treatment
- Mechanical methods
 - Centrifugation
 - Vacuum filtration
 - Belt filter press
 - Plate filters

Centrifuge



From Lecture #30

Vacuum Filter

Belt Filter Press

From Lecture #30

To next lecture