

CEE 370 Environmental Engineering Principles

Lecture #30

Wastewater Treatment I:

WW characteristics, $1^{\circ} \& 2^{\circ}$ treatment

Reading M&Z, Chapter 9

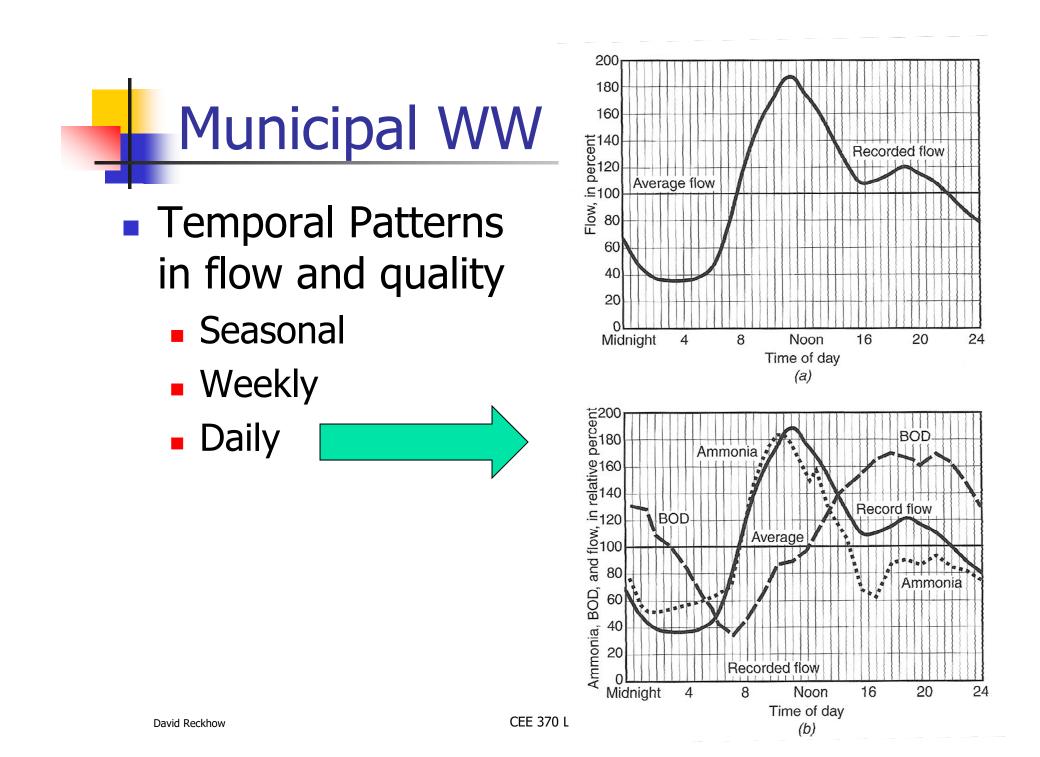
<u>Reading</u>: Davis & Cornwall, Chapt 6-1 to 6-8 <u>Reading: Davis & Masten, Chapter 11-1 to 11-7</u>

David Reckhow

CEE 370 L#31

WW Parameters

- Conventional
 - BOD
 - TSS
 - Oil & grease
 - ∎ pH
- Nutrients
 - Nitrogen
 - Ammonia
 - Nitrate
 - TKN
 - Phosphorus


- Toxics
 - Heavy metals
 - Chromium, etc.
 - Pesticides
 - Parathion, etc
 - Industrial
 - Phenol, etc.
- PPCPs
 - Pharmaceuticals
 - Personal care products
- Others
 - TOC, etc.

Wastewater Characteristics

Municipal/Domestic WW

TABLE 10-1	Typical Composition of Untreated Domestic Wastewater				
	Constituent	Weak Medium Strong (all mg · L ⁻¹ except settleable solids)			
	Alkalinity (as CaCO ₂) ^a	50	100	200	
	BOD_5 (as O_2)	100	200	300	
	Chloride	30	50	100	
	COD (as O ₂)	250	500	1000	
	Suspended solids (SS)	100	200	350	
	Settleable solids (in mL · L ⁻¹)	5	10	20	
	Total dissolved solids (TDS)	200	500	1000	
	Total Kjeldahl nitrogen (TKN) (as N)	20	40	80	
	Total organic carbon (TOC) (as C)	75	50	300	
	Total phosphorus (as P)	5	10	20	

^aThis amount of alkalinity is the contribution from the waste. It is to be added to the naturally occuring alkalinity in the water supply. Chloride is exclusive of contribution from water-softener backwash.

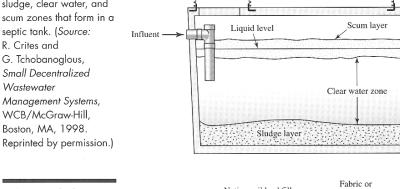


FIGURE 10-1	
Schematic of a conventional septic system. (Source: R. Crites and G. Tchobanoglous, Small Decentralized Wastewater Management Systems, WCB/McGraw-Hill, Boston, MA, 1998. Reprinted by permission.)	Risers to ground surface for easy access Distribution box Perforated absorption drainline or pressure with orifices with orifices by the original surface or an effluent filter and gravity discharge or an effluent filter and pump for pressure dosing
FIGURE 10-2	Riser
Definition sketch for the sludge, clear water, and scum zones that form in a septic tank. (<i>Source:</i> R. Crites and G. Tchobanoglous,	Influent Effluent Effluent

Septic Systems

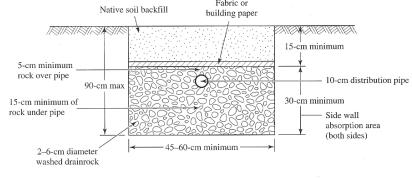

 Requires minor levels of maintenance

FIGURE 10-3

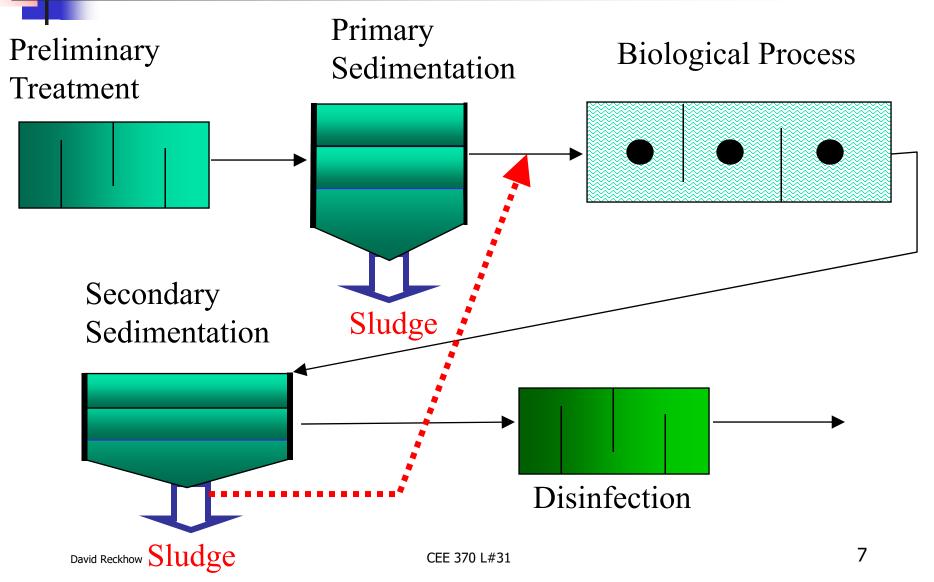
Wastewater

Typical cross section through conventional absorption trench. (Source: R. Crites and G. Tchobanoglous, Small Decentralized Wastewater Management Systems, WCB/McGraw-Hill, Boston, MA, 1998. Reprinted by permission.)

Municipal WW Treatment

- Primary

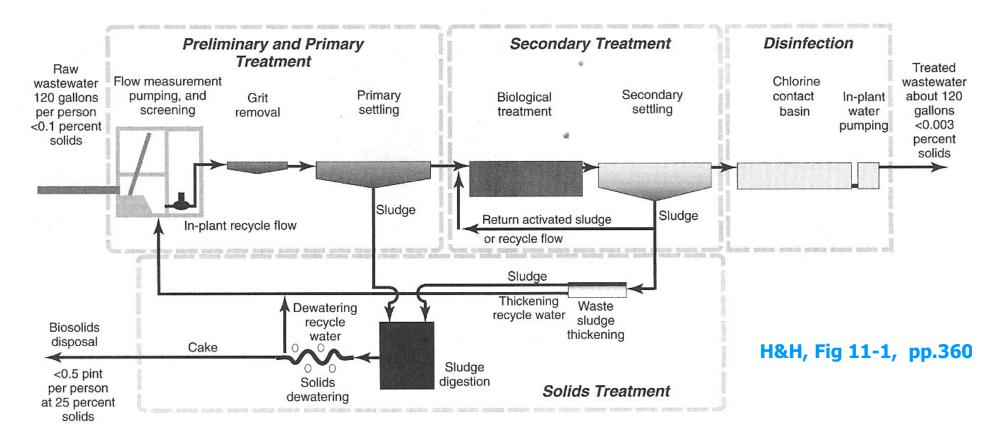
 Solids removal

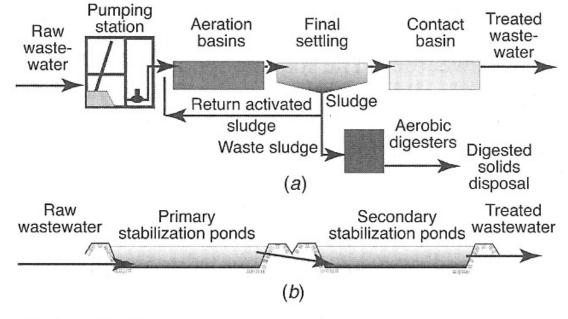

 Secondary

 Biological treatment
 BOD control

 Tertiary or Advanced
 - Biological or chemical
 - Nutrient control, etc

Also must treat residuals (e.g., sludge)


Conventional WW Treatment


Incorporating 1° and 2° treatment May also need 3° treatment

From a few hundred people to several thousand

H&H, Fig 11-2, pp.361

Figure 11-2

Processing diagrams of systems for treatment of small wastewater flows. (*a*) Biological processing without primary sedimentation. (*b*) Natural facultative stabilization ponds.

Design Loading & Parameters

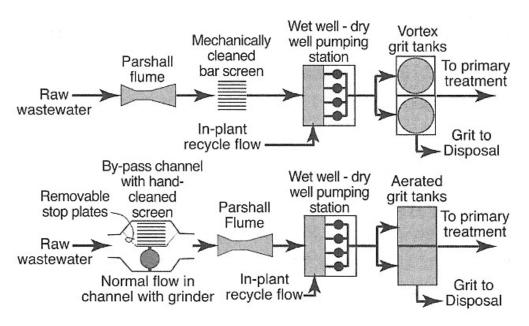
Peak hourly – often occurs during storm event

10 States Standards; 2004 Edition

TABLE II-I

H&H, Table 1-1, pp.363

Typical Design Criteria for the Treatment Processes Shown in Figure 11–1


	Process	Loading
	Flow measurement	Peak hourly flow
	Bar screen	Peak hourly flow
	Pumps	Peak hourly flow
		Min. hourly flow
	Grit chamber	Max. monthly flow
		Peak hourly flow
	Primary settling	Max. monthly flow
	Biological treatment	Max. monthly BOD loading
	-	Check peak hourly BOD loading
	Final settling	Max. monthly flow
	Disinfection	Peak hourly flow
	Thickening	Max. daily sludge flow
		Check max. solids loading
	Digestion	Max. monthly volatile solids load
		Check max. monthly sludge flow
-	Dewatering	Max. sludge flow
		Check max. solids loading
	Land application	Max. nutrient loading (sludge)
		Max. hydraulic loading (water)
		(nater)

CEE 370 L#31

Preliminary Treatment

Chemical addition

- Not common
- Flow measurement
 - Parshall flumes are most common
- Screening
- Pumping
- Grit Removal

H&H, Fig 11-4, pp.364

Figure 11-4

Typical arrangements of preliminary treatment units in municipal wastewater processing: flow measurement, screening, sewage pumping, and grit removal. The lower sequence is common for smaller plants.

Screens

Bar Screens

- openings from 0.5-2.25 in
- Cleaned by mechanical travelling rake

Fabric Screens

 Finer (0.125-0.25 in), more common in Europe

H&H, Fig 11-5, pp.365

Cog rai Enclosed frame and support structure Discharge chute and Belt wiper conveyor Safety screen (a)Screenings dewatering Drip compactor Motor pan Hand rail over channel Cogwheel driven Bar screet platform Incomina Traveling rake wastewater

(b) Figure 11-5

Climber-style mechanically cleaned bar screen. (a) Photo of drive at the top of the bar screen showing motor and cog wheels on the fixed plate between side rails. (b) Photo from behind the unit where screenings travel on a belt conveyor prior to compression dewatering and final disposal in a landfill. (c) Drawing of the bar screen. Screen openings are $\frac{3}{4}$ in. No moving parts are submerged in wastewater. The bottom portion of the bar screen is shown in Figure 11–11b.

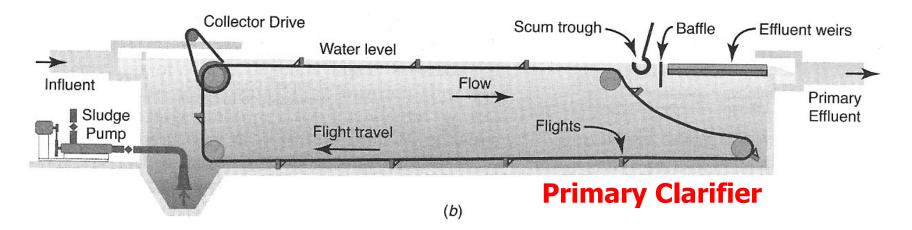
(C)

David Reckhow

CEE 370 L#31

Rectangular or circular tanks

 Similar to drinking water treatment



Flow enters behind an inlet baffle

(a)

 Baffles placed in front of effluent weirs prevent loss of floating materials

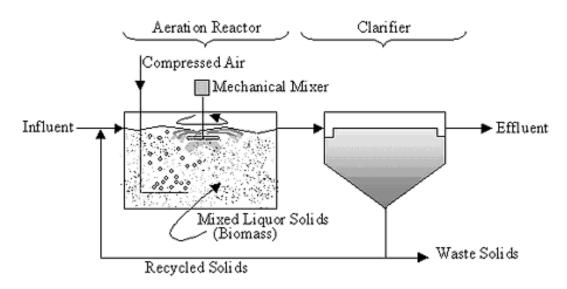
Removed by a mechanical skimmer (dual purpose)

Biological Processes

- Secondary Treatment
 - Activated Sludge
 - Many variations
- Suspended growth

Attached

Growth


- Ponds & lagoons
 - Many types
- Trickling Filters
- Rotating Biological Contactors
- Sludge
 - Aerobic digestion
 - Anaerobic digestion

Microorganisms & treatment

- Stabilization of organic matter
 - Mostly oxidation to CO₂ in aerobic processes
 - Mostly to CH₄ & CO₂ in anaerobic processes
- Formation of cellular biomass
 - Requires management of population
 - Disposal of excess (biological sludge)
- May require intensive addition of electron acceptor
 - O₂ added in some aerobic processes

Activated Sludge

- Two components
 - Aeration basin
 - Clarifier & return sludge

From University of Birmingham

Activated Sludge

- Mixed liquor
- Return Activated sludge

- Surface aerators
 Rubble diffusors
- 2. Bubble diffusers

David Reckhow

To next lecture