CEE 370 Environmental Engineering Principles

Lecture #30

Wastewater Treatment I:

WW characteristics, 1° & 2° treatment

Reading M&Z, Chapter 9

<u>Reading</u>: Davis & Cornwall, Chapt 6-1 to 6-8 <u>Reading: Davis & Masten, Chapter 11-1 to 11-7</u>

David Reckhow

CEE 370 L#31

WW Parameters

- Conventional
 - BOD
 - TSS
 - Oil & grease
 - pH
- Nutrients
 - Nitrogen
 - Ammonia
 - Nitrate
 - TKN
 - Phosphorus

- Toxics
 - Heavy metals
 - Chromium, etc.
 - Pesticides
 - Parathion, etc
 - Industrial
 - Phenol, etc.
- PPCPs
 - Pharmaceuticals
 - Personal care products
- Others
 - TOC, etc.

Wastewater Characteristics

Municipal/Domestic WW

ABLE 10-1	Typical Composition of Untreated Domestic Wastewater				
	Constituent	Weak (all mg	Medium J · L ⁻¹ except settleab	Strong le solids)	
	Alkalinity (as CaCO ₂) ^a	50	100	200	
	BOD_5 (as O_2)	100	200	300	
	Chloride	30	50	100	
	COD (as O ₂)	250	500	1000	
	Suspended solids (SS)	100	200	350	
	Settleable solids (in mL · L ⁻¹)	5	10	20	
	Total dissolved solids (TDS)	200	500	1000	
	Total Kjeldahl nitrogen (TKN) (as N)	20	40	80	
	Total organic carbon (TOC) (as C)	75	50	300	
	Total phosphorus (as P)	5	10	20	

^aThis amount of alkalinity is the contribution from the waste. It is to be added to the naturally occuring alkalinity in the water supply. Chloride is exclusive of contribution from water-softener backwash.

 T_{i}

Municipal WW

- Temporal Patterns in flow and quality
 - Seasonal
 - Weekly
 - Daily

Recorded flow

Noon

Time of day

(b)

16

20

24

8

Midnight

4

On-site disposal

- Septic Systems
 - Requires minor levels of maintenance

FIGURE 10–1

Schematic of a conventional septic system. (Source: R. Crites and G. Tchobanoglous, Small Decentralized Wastewater Management Systems, WCB/McGraw-Hill, Boston, MA, 1998. Reprinted by permission.)

Influent Liquid level Scum layer Clear water zone Sludge layer

FIGURE 10-3

FIGURE 10-2

Definition sketch for the

sludge, clear water, and scum zones that form in a

septic tank. (Source:

Management Systems, WCB/McGraw-Hill, Boston, MA, 1998.

Reprinted by permission.)

R. Crites and G. Tchobanoglous, Small Decentralized Wastewater

Typical cross section through conventional absorption trench. (Source: R. Crites and G. Tchobanoglous, Small Decentralized Wastewater Management Systems, WCB/McGraw-Hill, Boston, MA, 1998. Reprinted by permission.)

Municipal WW Treatment

- Primary
 - Solids removal
- Secondary
 - Biological treatment
 - BOD control
- Tertiary or Advanced
 - Biological or chemical
 - Nutrient control, etc

Also must treat residuals (e.g., sludge)

Conventional

Conventional WW Treatment

Saskatoon WWTP

Intro to WWT

Incorporating 1° and 2° treatment May also need 3° treatment

Small WWT Systems

From a few hundred people to several thousand

H&H, Fig 11-2, pp.361

Figure 11-2

Processing diagrams of systems for treatment of small wastewater flows. (*a*) Biological processing without primary sedimentation. (*b*) Natural facultative stabilization ponds.

Design Loading & Parameters

 Peak hourly – often occurs during storm event

10 States Standards; 2004 Edition

TABLE ||-| H&H, Table 1-1, pp.363

Typical Design Criteria for the Treatment Processes Shown in Figure 11–1

Process	Loading		
Flow measurement	Peak hourly flow		
Bar screen	Peak hourly flow		
Pumps	Peak hourly flow		
	Min. hourly flow		
Grit chamber	Max. monthly flow		
	Peak hourly flow		
Primary settling	Max, monthly flow		
Biological treatment	Max. monthly BOD loading		
0	Check peak hourly BOD loading		
Final settling	Max. monthly flow		
Disinfection	Peak hourly flow		
Thickening	Max. daily sludge flow		
0	Check max. solids loading		
Digestion	Max. monthly volatile solids load		
	Check max. monthly sludge flow		
Dewatering	Max. sludge flow		
	Check max. solids loading		
Land application	Max. nutrient loading (sludge)		
2 S	Max. hydraulic loading (water)		

CEE 370 L#31

Preliminary Treatment

Chemical addition

- Not common
- Flow measurement
 - Parshall flumes are most common
- Screening
- Pumping
- Grit Removal

channel with grinder

Figure 11-4

Typical arrangements of preliminary treatment units in municipal wastewater processing: flow measurement, screening, sewage pumping, and grit removal. The lower sequence is common for smaller plants.

recycle flow-

H&H, Fig 11-4, pp.364

Vortex

arit tanks

Aerated

grit tanks

To primary

treatment

Grit to

- Disposal

To primary

treatment

Grit to

Disposal

Wet well - drv

well pumping

Mechanically

Bar Screens

- openings from 0.5-2.25 in
- Cleaned by mechanical travelling rake

Fabric Screens

Finer (0.125-0.25 in), more common in Europe

CEE 370 L#31

(b)

(C)

Figure 11-5

Climber-style mechanically cleaned bar screen. (a) Photo of drive at the top of the bar screen showing motor and cog wheels on the fixed plate between side rails. (b) Photo from behind the unit where screenings travel on a belt conveyor prior to compression dewatering and final disposal in a landfill. (c) Drawing of the bar screen. Screen openings are $\frac{3}{4}$ in. No moving parts are submerged in wastewater. The bottom portion of the bar screen is shown in Figure 11–11b.

1° Settling

Rectangular or circular tanks

 Similar to drinking water treatment

(a)

- Flow enters behind an inlet baffle
- Baffles placed in front of effluent weirs prevent loss of floating materials
 - Removed by a mechanical skimmer (dual purpose)

Biological Processes

Secondary Treatment

- Activated Sludge[¬]
 - Many variations
- Ponds & lagoons
 - Many types
- Trickling Filters
- Rotating Biological Contactors
- Attached Growth

Suspended growth

- Sludge
 - Aerobic digestion
 - Anaerobic digestion

Microorganisms & treatment

Stabilization of organic matter

- Mostly oxidation to CO₂ in aerobic processes
- Mostly to CH₄ & CO₂ in anaerobic processes
- Formation of cellular biomass
 - Requires management of population
 - Disposal of excess (biological sludge)
- May require intensive addition of electron acceptor
 - O₂ added in some aerobic processes

Activated Sludge

- Two components
 - Aeration basin
 - Clarifier & return sludge

From University of Birmingham

Activated Sludge

- Mixed liquor
- Return Activated sludge

Surface aerators
 Bubble diffusers

To next lecture