

Sedimentation Principles		
Settling Type	Description	Applications
Discrete	Individual particles settle independently, neither agglomerating or interfering with the settling of the other particles present. This occurs in waters with a low concentration of particles.	Grit chambers
Flocculant	Particle concentrations are sufficiently high that particle agglomeration occurs. This results in a reduction in the number of particles and in increase in average particle mass. The increase in particle mass results in higher settling velocities.	Primary clarifiers, upper zones of secondary clarifiers.
Hindered (Zone)	Particle concentration is sufficient that particles interfere with the settling of other particles. Particles settle together with the water required to traverse the particle interstices.	Secondary clarifiers
Compression	In the lower reaches of clarifiers where particle concentrations are highest, particles can settle only by compressing the mass of particles below.	Lower zones of secondary clarifiers and in sludge thickening tanks.
David Reckhow	CEE 370 L#28	16

 Primary Sedimentation Primary Treatment Removes ~50% of suspended solids 			
Parameter	Design Range	Typical Value	
Overflow Rate	35-45 m/d 800-1200 gal/ft ² /d	40 m/d 1000 gal/ft ² /d	
Detention Time	1.5-2.5 h	2 h	
Weir loading rate	125-500 m ² /d 10,000-40,000 gal/ft/d	275 m ² /d 20,000 gal/ft/d	

Flocculent Settling

David Reckhov

Flocculant settling occurs when the concentration of particles is sufficiently high to allow the particles to agglomerate. The agglomeration is the result of gentle mixing induced by paddles in some sedimentation basins and from differential settling velocities of particles of different mass and size. This agglomeration results in larger particles, often with entrained water, but with higher settling velocities than would occur without agglomeration. Since the particle size and mass continually changes, it is not possible to use Stoke's Law to estimate the settling velocity. Flocculent settling is normally the predominant removal process in primary wastewater clarifiers.

Flocculant settling is analyzed or estimated by using laboratory settling experiments. The laboratory data is then used to estimate the removal versus settling time in the settling basin.

CEE 370 L#28

39

