CEE 370 Environmental Engineering Principles

Lecture #24 Water Quality Management II: Rivers

Reading: Mihelcic & Zimmerman, Chapter 7 (7.7 focus) Reading: Davis & Cornwall, Chapt 5-3 Reading: Davis & Masten, Chapter 9-3

David Reckhow

CEE 370 L#24

General Aspects of WQ Models

Pollutants

- Conservative *Joesn't Undergo Degradation*
- Non-conservative
- Approach
 - Deterministic
 - Stochastic

Based on mechanisms Iconomics automess

- Time Variability
 - Steady State
 - Dynamic

Unchanging with time

Waste Loading

- Point Sources
 - Municipal WW
 - Industrial WW
 - Tributaries
- Non-point Sources
 - Agricultural
 - Silvicultural
 - Atmospheric
 - Urban & Suburban Runoff

Loading Calculations

Point Sources - General Concepts $W(t) = Q(t) \bullet c(t) \bullet c(t) \bullet mg/L$ $W(t) = Q(t) \bullet c(t) \bullet mg/L$ $W(t) = Q(t) \bullet c(t) \bullet mg/L$

Important Conversion Factors:

$$8.34 \frac{lb \bullet liters}{mg \bullet MG} \quad 5.39 \frac{lb \bullet liters \bullet \sec}{mg \bullet ft^3 \bullet day} \quad 2.45 \frac{Kg \bullet liters \bullet \sec}{mg \bullet ft^3 \bullet day}$$

Chloride Problem

 Determine the required industrial reduction in chloride (a conservative substance) to maintain a desired chloride concentration of 250 mg/L at the intake

Example 24.1

- A waste is discharged into a river
 - Waste characteristics
 - $CBOD_5 = 200 \text{ mg/L}$

•
$$k_L = 0.1 \text{ day}^{-1}$$

• $Q_w = 1 \text{ m}^3/\text{s}$

$$BOD_t \equiv y_t = L_o(1 - e^{-k_1 t})$$

Upstream river characteristics

•
$$CBOD_{ultimate} = 2 mg/L$$

$$Q_u = 9 \text{ m}^3/\text{s}$$

What is the CBOD_{ultimate} at the point of mixing?

See pg. 267 in Mehelcic

Loading

$Loading = W(t) = Qc_{in}(t)$

- Point Sources
 - Municipal Wastewater
 - Industrial Wastewater
 - Tributaries
- Non-point sources
 - agricultural
 - silvicultural
 - atmospheric
 - urban & suburban runoff
 - groundwater

Well defined origin easily measured more constant

Diffuse origin more transient often dependent on precipitation

Reported Values Of Selected Waste Input Parameters In The United States (Table 1.3 from Thomann & Mueller)

Variable	Units ^a	Municipal Influent ^b	CSO°	Urban Runoff ^d	Agriculture (lb/mi ² -d) ^e	Forest (lb/mi ² -d) ^e	Atmosphere (lb/mi ² -day) ^f
Average daily flow	gcd	125					
Total suspended solids	mg/L	300	410	610	2500	400	
CBOD5 ^g	mg/L	180	170	27	40	8	
CBODU ^g	mg/L	220	240				
NBOD ^g	mg/L	220	290				
Total nitrogen	mg-N/L	50	9	2.3	15	4	8.9-18.9
Total phosphorus	mg-P/L	10	3	0.5	1.0	0.3	0.13-1.3
Total coliforms	10 ⁶ /100 mL	30	6	0.3			
Cadmium	μg/L	1.2	10	13			0.015
Lead	μg/L	22	190	280			1.3
Chromium	μg/L	42	190	22			0.088
Copper	μ g/L	159	460	110			
Zinc	μg/L	241	660	500			1.8
Total PCB	μg/L	0.9	0.3	-			0.002-0.02

Footnotes for T&M Table 1.3

^aUnits apply to municipal, CSO (combined sewer overflow), and urban runoff sources; gcd = gallons per capita per day.
^bThomann (1972); heavy metals and PCB, HydroQual (1982).
^cThomann (1972); total coli, Tetra Tech, (1977); heavy metals Di Toro et al. (1978): PCB. Hydroscience (1978).

^dTetra Tech (1977): heavy metals, Di Toro et al. (1978).

^eHydroscience (1976a).

- ^fNitrogen and phosphorus, Tetra Tech (1982): heavy metals and PC13, HydroQual (1982).
- ^gCBOD5 = 5 day carbonaceous biochemical oxygen demand (CBOD); CBODU = ultimate CBOD; NBOD = nitrogenous BOD.

oading: Flow as a function of precipitation

Non point sources are difficult to characterize

- Empirical approach: export coefficients (see Table 3.1 in T&M)
- Mechanistic approach: relate to meteorology, topology, etc.

• Flow: use the rational formula: $Q_R = cIA$ Drainage

Runoff flow [L³/T]

Runoff coefficient

0.1-0.3 for rural areas (1 person/acre)0.7-0.9 for heavy commercial areas

Area [L²]

Rainfall Intensity [L/T]

oading: conc. as a function of flow

It is common for pollutant concentrations from uncontrolled sources (e.g. tributaries) to be correlated with flow

Loading Example: #3.1 from T&M

- Data: Runoff from 100 mi² of agricultural lands drains to a point in a river where a city of 100,000 people is located. The city has a land area of 10 mi² and its sanitary sewers are separated from its storm drains. A sewage treatment plant discharges to the river immediately downstream of the city. The area receives an annual rainfall of 30 in. of which 30% runs off the agricultural lands and 50% drains off the more impervious city area.
- Problem: Using the loading data from Table 1.3 and the residual fractions cited in the table below, compare the contributions of the atmospheric, agricultural and urban sources to annual average values of flow, CBOD5, total coliform bacteria, and lead in the river. Neglect any decay mechanisms for all parameters.

	(at)	(ag)	(ur)	Wastewater Ti	eatment Plant
ltem	Atmospheric	Agricultural	Urban Runoff	Influent	Resid. Fract.
Fow		30% precip.	50% precip.	125 gcd	1.00
CBOD5		40 lb/mi ² -d	27 mg/L	180 mg/L	0.15
Total coliform		100/100 mL	3x10 ⁵ /100mL	3x10 ⁶ /100mL	0.0001
Lead	1.3 lb/mi ² -d		280 μg/L	22 μg/L	0.05

Solution to loading problem

Flow contributions

 $Q(ag) = 100mi^{2} (30in / yr) 0.3 (\frac{5280 ft}{mi})^{2} \frac{1 ft}{12in} \frac{1 yr}{365 d} \frac{1 d}{86,400 s}$ = 66.3 cfs

$$Q(ur) = 10mi^{2} (30in / yr) 0.5 (\frac{5280 ft}{mi})^{2} \frac{1 ft}{12in} \frac{1 yr}{365 d} \frac{1 d}{86,400 s}$$
$$= 11.1 cfs$$

$$Q(wwtp) = 100,000cap \frac{125gal}{cap - d} \frac{1MG}{10^{6} gal}$$
$$= 12.5MGD \left(\frac{1.548cfs}{MGD}\right)$$
$$= 19.4cfs$$

Solution to loading problem (cont.)
• CBOD5 loading

$$W(ag) = 100mi^{2} \left(40 \frac{lb}{mi^{2}d} \right)$$

$$= 4000 \frac{lb}{d}$$

$$W(ur) = 11.1cfs(27mg/L)5.4 \frac{lb/d}{cfs - mg/L}$$

$$= 1620 \frac{lb}{d}$$

$$W(wwtp) = 12.5MGD(180mg/L)0.15 \left(\frac{8.34lb/d}{MGD^{*}mg/L} \right)$$

$$= 2810 \frac{lb}{d}$$

Solution to loading problem (cont.)

Lead loading

d

$$W(atm) = 100mi^{2} \left(1.3 \frac{lb}{mi^{2}d} \right) 0.1$$
$$= 13 \frac{lb}{d}$$

$$W(ur) = 11.1cfs(280\,\mu g \,/\,L)5.4 \frac{lb \,/\,d}{cfs - mg \,/\,L} \left(\frac{10^{-3}\,mg}{\mu g}\right)$$
$$= 16.8 \frac{lb}{l}$$

$$W(wwtp) = 12.5MGD(22\,\mu g \,/\,L)0.05\left(\frac{8.34\,lb \,/\,d}{MGD^*mg \,/\,L}\right)\frac{10^{-3}\,mg}{\mu g}$$
$$= 0.11\frac{lb}{d}$$

A polluted stream with a temperature of 25°C has a dissolved oxygen concentration of 4 mg/L. Use Gibbs free energy to determine if oxygen from the atmosphere is dissolving into the water, the oxygen is at equilibrium, or oxygen from the stream is going into the atmosphere.

$$O_2(aq) \rightarrow O_2(g)$$

Example 4.7 from Ray

Solution to DO example

$$\Delta G^{\circ}_{rxn} = \Delta G^{\circ}_{O_2(g)} - \Delta G^{\circ}_{O_2(aq)} = \left(0 \ \frac{kcal}{mol}\right) - \left(-3.9 \ \frac{kcal}{mol}\right)$$
$$\Delta G^{\circ}_{rxn} = 3.9 \ \frac{kcal}{mol}$$
$$\Delta G = \Delta G^{\circ} + RT \ln \frac{p_{O_2}}{[O_2(aq)]}$$

$$[O_2(aq)] = 4 \frac{\text{mg } O_2}{\text{L}} \times \frac{\text{g } O_2}{1000 \text{ mg } O_2} \times \frac{\text{mol } O_2}{32 \text{ g } O_2} = 1.25 \times 10^{-4} \text{ M}$$

Solution (cont.)

$$\Delta G = -3.9 \frac{\text{kcal}}{\text{mol}} \times \frac{1000 \text{ cal}}{\text{kcal}} + \left(1.987 \frac{\text{cal}}{\text{K-mol}}\right) (298 \text{ K}) \ln\left(\frac{0.209 \text{ atm}}{1.25 \times 10^{-4} \text{ M}}\right)$$

$$\Delta G = 491 \frac{\text{cal}}{\text{mol}} > 0$$

Since ΔG is positive, the reaction will proceed in the reverse direction as written. From the atmosphere to the water.

Gas Transfer: Equilibria

Henry's Law

$$C_{aq} = K'_H p_{gas}$$

where,

- C_{aq} = concentration of species A at equilibrium, [mol/L or mg/L]
- K'_{H} = Henry's Law constant for species A, [mol/L-atm or mg/L-atm]
- p_{gas} = partial pressure gas A exerts on the liquid, [atm]

Henry's Law Constants

Reaction	Name	K _h , mol/L-atm	$pK_h = -log K_h$
$CO_2(g) = CO_2(aq)$	Carbon dioxide	3.41 x 10 ⁻²	1.47
$NH_3(g) = NH_3(aq)$	Ammonia	57.6	-1.76
$H_2S(g) = H_2S(aq)$	Hydrogen sulfide	1.02 x 10 ⁻¹	0.99
$CH_4(g) = CH_4(aq)$	Methane	1.50 x 10 ⁻³	2.82
$O_2(g) = O_2(aq)$	Oxygen	1.26 x 10 ⁻³	2.90

Although the atmosphere we breathe is comprised of approximately 20.9 percent oxygen, oxygen is only slightly soluble in water. In addition, the solubility decreases as the temperature increases. Thus, oxygen availability to aquatic life decreases during the summer months when the biological processes which consume oxygen are most active. Summer water temperatures of 25 to 30°C are typical for many surface waters in the U.S. Henry's Law constant for oxygen in water is 61.2 mg/L-atm at 5°C and 40.2 mg/L-atm at 25°C. What is the solubility of oxygen at 5°C and at 25°C?

Example 4.1 from Ray

Solution O₂ Solubility Ex.

At 5^oC the solubility is:

$$C_{O_2}(5^{\circ}C) = K_{H,O_2} P_{O_2} = 61.2 \frac{mg}{L-atm} \times 0.209 atm$$

 $C_{O_2}(5^{\circ}C) = 12.8 \frac{mg}{L}$

At 25°C the solubility is:

$$C_{O_2}(25^{\circ}C) = K_{H,O_2} P_{O_2} = 40.2 \frac{mg}{L-atm} \times 0.209 \text{ atm}$$

 $C_{O_2}(25^{\circ}C) = 8.40 \frac{mg}{L}$

23

Gas Transfer: kinetics

 For a typical water system, the change in concentration of the gas with time can <u>be expressed as</u>:

where,

$$\frac{dC}{dt} = -k_L a \left(C_s - C_t \right)$$

k _L a	=	gas transfer coefficient, [time ⁻¹]
C _t	=	concentration at time t, [mol/L or mg/L]
Cs	=	saturation concentration from Henry's Law.

k_La is actually the gas transfer coefficient k_L times the specific surface area, a, where a is the bubble surface area divided by the bubble volume. It is quite difficult to determine the two parameters separately. Since they are normally used together a separate determination is not necessary.

David Reckhow

CEE 370 L#24

Analyzing Gas Transfer Data

The above equation can be separated and integrated from $C = C_o$ at t = 0 to $C = C_t$ at t = t, yielding:

$$\ln \frac{\left(C_{s}-C_{t}\right)}{\left(C_{s}-C_{o}\right)} = -k_{L}at$$

Simple Plug Flow River Model

Pipe: Plug Flow Reactor

River: Plug Flow Model

Which becomes:

$$\frac{\partial s}{\partial t} = -\frac{1}{A}\frac{\partial(Qs)}{\partial x} - ks$$

David Reckhow

Plug Flow Model Solution

at steady state, and at constant flow between inputs:

$$U\frac{ds}{dx} = -ks$$

$$s = s_o e^{-k\frac{x}{u}}$$

Both in a **<u>BOD test</u>** and in a **<u>flowing river</u>**, "L" is modeled as a simple 1st order decay:

$$\frac{dL}{dt} = -k_1 L$$

Which leads to:

$$L_t = L_o e^{-k_1 t}$$

And when considering a **BOD test**, we use the following definition:
$$BOD_t \equiv y_t = L_o - L_t$$

And combining we get:
$$BOD_t \equiv y_t = L_o(1 - e^{-k_1 t})$$
 Equ 9-6 in DM

$$BOD_u \equiv BOD_{ultimate} \equiv BOD_{\infty} \equiv L_0$$

David Reckhow

CEE 370 L#24

BOD Modeling in a River I

- We use BOD_u (ultimate BOD) for all calculations that involve dissolved oxygen in natural waters
 - This is because all of the BOD (not just the BOD₅) is able to consume oxygen
- Since BOD is always measured as BOD₅, we must first convert it to BOD_u before we can use it in DO models
 - You need the bottle constant (k_b) to do this:

$$BOD_u = \frac{BOD_5}{1 - e^{-k_b(5days)}}$$

BOD Modeling in a River II

 Since BOD is lost by simple 1st order decay (causing deoxygenation at rate, k_d)

$$L_x = L_o e^{-k_d \left(\frac{x}{u} \right)}$$

 And if BOD is also lost due to settling we must include the settling rate (k_s)

$$L_x = L_o e^{-(k_d + k_s) \left(\frac{x}{u} \right)}$$

BOD example

- A municipal WWTP discharges its effluent into a moderate size river. What is the CBOD_u at a point 30 km downstream of the point of discharge?
 - River geometry
 - Width = 20 m
 - Depth = 5 m
 - River (upstream)
 - Flow = $9 \text{ m}^3/\text{sec}$
 - $CBOD_u = 0 mg/L$

- Wastewater
 - Flow = $1 \text{ m}^3/\text{sec}$
 - $CBOD_u = 30 \text{ mg/L}$
 - $k_1 = 0.3 d^{-1}$

$$D = DO_{sat} - DO_{act}$$

where

- D = oxygen deficit, [mg/L]
- *DO*_{sat} = saturation value of dissolved oxygen, [mg/L]
- *DO*_{act} = actual dissolved oxygen value for the stream, [mg/L]

DO Deficit Mass Balance

Let us assume that the rate of oxygen entering the stream through the atmosphere is proportional to the dissolved oxygen deficit in the stream. Similarly, let us assume that the rate of oxygen consumed or leaving the stream is proportional to the amount of organic matter in the stream, expressed as BOD_u (ultimate BOD).

$$\frac{dD}{dt} = k_1 L - k_2 D$$

where

- time, [days]
- = ultimate stream BOD, [mg/L]
 - deoxygenation constant, [day-1]
 - reaeration constant, [day-1]

 K_1

 K_{2}

CEE 370 L#24

Note critical point, deficit

M&Z Fig 7.22a

Characteristics

	Stream Zones					
	Clean Water	Degradation	Damage	Recovery	Clean Water	
Physical conditions	Clear water; no bottom sludge	Floating solids; bottom sludge	Turbid water; malodorous gases; bottom sludge	Turbid water; bottom sludge	Clear water; no bottom sludge	
Fish species	Cold or warm water game and forage fish; trout, bass,	Pollution- tolerant fish; carp. gar, buffalo	None	Pollution- tolerant fish; carp, gar, buffalo	Cold or warm water game and forage fish; trout, bass,	
Benthic invertebrate	clean water	intermediate tolerance	pollution tolerant	intermediate tolerance	clean water	

Diversity and population

M&Z Fig 7.22d

Gas Transfer: kinetics

For a typical water system, the change in concentration of the gas with time can be expressed as: $\frac{dC}{dt} = -k_L a \left(C_S - C \right)$

where.

	,	
К _L а		=
С		=
Cs		=

gas transfer coefficient, [time-1]

concentration at time t, [mol/L or mg/L]

saturation concentration from Henry's Law.

And defining the deficit, D as: $D \equiv C_s - C$ $\frac{dD}{dt} = k_L aD$

 K_{I} a is actually the gas transfer coefficient K_{I} times the specific surface area, a, where a is the bubble surface area divided by the bubble volume. It is quite difficult to determine the two parameters separately. Since they are normally used together a separate determination is not necessary.

Streeter Phelps Equation

 Rate of change in deficit is equal to the deoxygenation rate minus the reaeration rate

$$\frac{dD}{dt} = k_d L - k_r D$$
in M&Z or
Equ 9-35
in DM

 Integrating and using the appropriate boundary conditions

$$D_{t} = \frac{k_{d}L_{a}}{k_{r} - k_{d}} \left(e^{-k_{d}t} - e^{-k_{r}t} \right) + D_{a} \left(e^{-k_{r}t} \right)$$

Sometimes called the "DO sag" equation

Equ 9-36 in D&M

Eau 7 1/

Streeter Phelps

Can be applied to any travel time (t), including the critical time (t_c)

$$D_{t} = \frac{k_{d}L_{a}}{k_{r} - k_{d}} \left(e^{-k_{d}t} - e^{-k_{r}t} \right) + D_{a} \left(e^{-k_{r}t} \right)$$
Equ 7.15
in M&Z or
Equ 9-36
in DM

where

 D_a = L_a = k_d = k_r = Initial stream DO deficit, [mg/L]; same as D_o Initial stream BOD_{ult}, [mg/L]; same as L_o deoxygenation constant, [day⁻¹]; same as k_1 reaeration constant, [day⁻¹]; same as k_2

Critical Time

- The most stress is placed on the aquatic life in a stream when the DO is at a minimum, or the deficit, D, is a maximum.
 - This occurs when dD/dt = 0. We can obtain the time at which the deficit is a maximum by taking the derivative of the DO sag equation with respect to t and setting it equal to zero, then solving for t. This yields,

$$t_{c} = \frac{1}{k_{r} - k_{d}} \ln \left[\frac{k_{r}}{k_{d}} \left(1 - D_{a} \frac{k_{r} - k_{d}}{k_{d} L_{a}} \right) \right] \quad \begin{array}{l} \text{Equ 7.17} \\ \text{in M&Z or} \\ \text{Equ 9-38} \\ \text{in D&M} \end{array}$$

 $t_{\rm c}$ = time at which maximum deficit (minimum DO) occurs, [days]

CEE 370 L#24

When k_r=k_d, a different form must be used:

$$t_c = \frac{1}{k_d} \left(1 - \frac{D_a}{L_a} \right)$$

Reaeration rate (K_2) is often represented as k_a or k_r

Reaeration Rates (d⁻¹)

- O'Connor-Dobbins formula
 - based on theory
 - $k_2 = 12.9 \frac{U^{0.5}}{H^{1.5}}$ verified with some deep waters
- Churchill formula
 - Tennessee Valley
 - deep, fast moving streams
- Owens formula
 - British

David Reckhow

shallow streams

(Principles of Surface Water Quality Modeling and Control, by Thomann & Mueller)

$$H^{1.6}$$

$$\frac{\text{For } \mathbf{k}_2}{\text{D&M cites: } \theta = 1.024} k_T = k_{20^{\circ}C} \theta^{T-20^{\circ}C}$$

CEE 370 L#24

(U in m/s; H in m)

$$k_2 = 3.9 \frac{U^{0.5}}{H^{1.5}}$$

$$k_2 = 11.6 \frac{U}{H^{1.67}}$$

(U in ft/s;

H in ft)

$$k_2 = 21.6 \frac{U^{0.67}}{H^{1.85}}$$

The method of Covar (1976)

Values for k_a (k₂, k_r) are in units of d⁻¹

Deoxygenation Rates (d⁻¹)

- Sometimes based on k_b from the BOD test
 - OK for deep, slow moving streams
- Use adjusted values when turbulence is high
 - Fast, shallow streams

$$k_d = k_b + \frac{U}{H}\eta$$

Equ 9-30 in D&M

Note the units of η are essentially "sec/day" as U/H is in sec⁻¹ and k is in d⁻¹

- Where η is the bed activity coefficient
 - 0.1 for stagnant or deep water
 - 0.6 for rapidly flowing water
- And k_b is the "bottle" rate from lab tests, sometimes just referred to as "k"

Wasteload Allocation (WLA)

- Successive reductions oading in waste loading
- Must meet water quality criteria for each river section
- Results in allowable waste loading for each discharger
 - **Dissolved Oxygen (mg/L** NPDES permit is written based on the WLA
- See also: Fig 1.2 from Thomann & Mueller

Miles Downstream

Reactions

- BOD degradation
 - Tied to DO loss
- Specific compound processes
 - Biodegradation (microbial)
 - Volatilization
 - Photolysis
 - Hydrolysis
 - Settling

 $k = k_h + k_v + k_p + k_m + k_s$

Normally expressed as 1st order rate constants

Example Problem 24.2

Small amounts of chloroform are commonly discharged from municipal and industrial wastewater treatment plants. Lets assume on a given day the concentration in the effluent at Erving, MA is 100 μ g/L. What is the concentration of chloroform in the Millers River 5 miles downstream of the Erving outfall, as it approaches the Connecticut River?

Important Information:

Example: Preliminary Calcs.

Conversion of Units

$$Q_{ww} = 4MGD * 1.547 \frac{cfs}{MGD} = 6.2cfs$$

$$U = 0.5 ft / s = 8.2 mi / d$$

Determination of Chloroform concentration at the point of

mixing

$$C_{o} = \frac{Q_{ww}C_{ww} + Q_{u}C_{u}}{Q_{ww} + Q_{u}}$$

= $\frac{(6cfs)100\mu g / L + (80cfs)0\mu ug / L}{6.2cfs + 80cfs}$
= $7.2\mu g / L$

Sample problem solution

$$k = k_h + k_v + k_p + k_m + k_s = 0.8d^{-1}$$

Using "C" here instead of "S"

$$C = C_o e^{-k \binom{x}{U}}$$

= 7.2 \mu g / L \[e^{-0.8d^{-1} \binom{5mi}{8.2mi/d}} \]
= 4.4 \mu g / L

Some important computer models

- Available from the EPA Center for Environmental Modeling (Athens, GA)
 - QUAL 2E (rivers, DO)
 - WASP
 - TOXIWASP
 - MINTEQ (chemistry)

To next lecture