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CEE 370
Environmental Engineering 
Principles

Lecture #22
Water Resources & Hydrology II: Wells,  
Withdrawals and Contaminant Transport

Reading: Mihelcic & Zimmerman, Chapter 7

Updated: 5 November 2019 Print version
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Darcy’s Law
 Groundwater flow, or flow through 

porous media
 Used to determine the rate at which water 

or other fluids flow in the sub-surface 
region

 Also applicable to flow through engineered 
system having pores
 Air Filters
 Sand beds
 Packed towers
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Groundwater flow
 Balance of forces, but frame of reference 

is reversed
 Water flowing though a “field” of particles
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 Head
 Height to which water rises within a well

 At water table for an “unconfined” aquifer
 Above water table for “confined” aquifers

 Hydraulic Gradient
 The difference in head between two points in a 

aquifer separated in horizontal space

dx
dh Gradient  Hydraulic 

Terminology
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Terminology
 Porosity

 The fraction of total volume of 
soil or rock that is empty pore 
space
 Typical values

 5-30% for sandstone rock
 25-50% for sand deposits
 5-50% for Karst limestone formations
 40-70% for clay deposits

 volumetotal
pores of volumes
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Darcy’s Law
 Obtained theoretically by setting drag forces equal to 

resistive forces
 Determined experimentally by Henri Darcy (1803-

1858)
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Hydraulic Conductivity, K
 Proportionality constant between hydraulic 

gradient and flow/area ratio
 A property of the medium through which 

flow is occurring (and of the fluid)
 Very High for gravel: 0.2 to 0.5 cm/s
 High for sand: 3x10-3 to 5x10-2 cm/s
 Low for clays: ~2x10-7 cm/s
 Almost zero for synthetic barriers: <10-11 for 

high density polyethylene membranes
 Measured by pumping tests
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Hydraulic Conductivity - Table
 Compare with M&Z Table 7.23
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Darcy Velocity
 re-arrangement of Darcy’s Law gives the Darcy Velocity, ʋ

 Not the true (or linear or seepage) velocity of groundwater flow 
because flow can only occur in pores

 combining
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Velocities Illustrated
 Pipe with soil core
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Alternative illustration



Example C

 An aquifer material of coarse sand has piezometric surfaces of 10 cm and 
8 cm above a datum and these are spaced 10 cm apart.  If the cross 
sectional area is 10 cm2, what is the linear velocity of the water?
 Hydraulic gradient:

 From the prior table, K for coarse sand is 5.2 x 10-4, so the Darcy velocity is:

 Assuming that the porosity is 30% or 0.3 (prior Table):
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See M&Z, example 7.9, part a



Definitions
 Specific Yield – the fraction of water in an 

aquifer that will drain by gravity
 Less than porosity due to capillary forces
 See Table 7-5 in D&M for typical values

 Transmissivity (T) – flow expected from a 1 m 
wide cross section of aquifer (full depth) when 
the hydraulic gradient is 1 m/m.
 T=K*D

 Where D is the aquifer depth and K is hydraulic conductivity
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Drawdown I
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 Unconfined aquifer
 D&M: Figure 7-31a

 Showing cone of depression



Drawdown II
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 Confined aquifer
 D&M: Figure 7-31b



Cones of Depression
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 Conductivity
 Low K

 Deep, shallow 
cone

 overlapping



Flow Model
 Well in confined aquifer

 In an unconfined aquifer
 D is replaced by average height of water table 

(h2+h1)/2, so:
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Where: hx is the height of  the 
piezometric surface at distance 
“rx” from the well

See examples: 7-10 and 
7-11 in D&M



Contaminant Flow
 Separate Phase flow – low solubility 

compounds
 Low density: 

 LNAPL – light non-aqueous phase liquid
 High density: HNAPL

 Dissolved contaminant
 Flows with water, but subject to 

retardation
 Caused by adsorption to aquifer materials
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See D&M section 9-7, 
pg.389-393



Adsorption in Groundwater
 Based on relative affinity of contaminant for aquifer to 

water
 Defined by partition coefficient, Kp:

 And more fundamentally the Kd can be related to the soil organic 
fraction (foc) and an organic partition coefficient (KOC):
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ococp fKK  See also pg 392 in 
D&M 2nd ed.
Similar to Equ 3.33, 
pg 95 in M&Z

Equ 2-89, pg 76 in 
D&M 2nd ed.
Similar to Equ 3.32, 
pg 95 in M&Z



Relative Velocities
 The retardation coefficient, R, is defined as 

the ratio of water velocity to contaminant 
velocity

 And since only the dissolved fraction of the 
contaminant actually moves
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Equ 9-42, pg 391 in 
D&M 2nd ed.



Relating R to Kd
 So

 And therefore

 And we can parse the last term:
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cont
 Note that the fundamental partition 

coefficient is:

 So:

 And then
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cont
 where:

 Where: 
 ρs is density of soil particles without pores

 usually ~2-3 g/cm3

 ρb is the bulk soil density with pores

 So, then
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Compare to Equ 9-43, pg 
391 in D&M 2nd ed.

M&Z Equ #7.23

See M&Z, example 7.9, part b



Estimation of partition coefficients

 Relationship to organic fraction

 and properties of organic fraction

 combining, we get:
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ococp KfK 

owoc KxK 71017.6  Octanol:water 
partition 
coefficient

owocp KfxK 71017.6 

Karickhoff et al., 1979; Wat. Res. 13:241
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Octanol:water partitioning

 2 liquid phases in a separatory 
funnel that don’t mix
 octanol
 water

 Add contaminant to flask
 Shake and allow contaminant to 

reach equilibrium between the two
 Measure concentration in each (Kow

is the ratio)
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cont
 Retardation in Groundwater & solute 

movement

p
b

f KR



1

=Soil bulk mass density
= void fraction



David Reckhow CEE 370 L#23 27



David Reckhow CEE 370 L#22 28

 To next lecture


