

CEE 370 Environmental Engineering Principles

Lecture #22 <u>Water Resources & Hydrology II</u>: Wells, Withdrawals and Contaminant Transport

Reading: Mihelcic & Zimmerman, Chapter 7

David Reckhow

CEE 370 L#22

Darcy's Law

- Groundwater flow, or flow through porous media
 - Used to determine the rate at which water or other fluids flow in the sub-surface region
 - Also applicable to flow through engineered system having pores
 - Air Filters
 - Sand beds
 - Packed towers

Groundwater flow

- Balance of forces, but frame of reference is reversed
 - Water flowing though a "field" of particles

Terminology

Head

- Height to which water rises within a well
 - At water table for an "unconfined" aquifer
 - Above water table for "confined" aquifers
- Hydraulic Gradient
 - The difference in head between two points in a aquifer separated in horizontal space

Hydraulic Gradient =
$$\frac{dh}{dx}$$

Porosity

space

- Typical values
 - 5-30% for sandstone rock
 - 25-50% for sand deposits
 - 5-50% for Karst limestone formations
 - 40-70% for clay deposits

$$\eta = \frac{\text{volumes of pores}}{\text{total volume}}$$

- Obtained theoretically by setting drag forces equal to resistive forces
- Determined experimentally by Henri Darcy (1803-1858) $\xrightarrow{L, or}$

$$Q = -KA\frac{dh}{dx} \equiv -K\left(\frac{\Delta h}{L}\right)A \equiv -K\left(\frac{h_L}{L}\right) |^{\nabla}$$

Flow per unit crosssectional area is directly proportional to the hydraulic gradient

 Δh

David Reckhow

CEE 370 L#23

Hydraulic Conductivity, K

- Proportionality constant between hydraulic gradient and flow/area ratio
- A property of the medium through which flow is occurring (and of the fluid)
 - Very High for gravel: 0.2 to 0.5 cm/s
 - High for sand: $3x10^{-3}$ to $5x10^{-2}$ cm/s
 - Low for clays: ~2x10⁻⁷ cm/s
 - Almost zero for synthetic barriers: <10⁻¹¹ for high density polyethylene membranes
- Measured by pumping tests

Hydraulic Conductivity - Table

Compare with M&Z Table 7.23

Typical Values of Aquifer Parameters

Aquifer Material	Porosity (%)	Typical Values for Hydraulic Conductivity $(m \cdot s^{-1})$
Clay	55	2.3 × 10 ⁻⁹
Loam	35	6.0×10^{-6}
Fine sand	45	2.9×10^{-5}
Medium sand	37	$1.4 imes 10^{-4}$
Coarse sand	30	5.2×10^{-4}
Sand and gravel	20	6.0×10^{-4}
Gravel	25	3.1×10^{-3}
Slate	<5	9.2×10^{-10}
Granite	<1	1.2×10^{-10}
Sandstone	15	5.8×10^{-7}
Limestone	15	1.1×10^{-5}
Fractured rock	5	$1 \times 10^{-8} - 1 \times 10^{-4}$

re-arrangement of Darcy's Law gives the Darcy Velocity, υ

$$v_d = \frac{Q}{A} = -K\left(\frac{dh}{dx}\right)$$
 or $v = \frac{Q}{A} = -K\left(\frac{\Delta h}{L}\right)$

 Not the true (or linear or seepage) velocity of groundwater flow because flow can only occur in pores

$$v_{true} \equiv v_a = \frac{L}{\tau} = \frac{L}{\frac{\eta V}{Q}} = \frac{QL}{\eta V} = \frac{1}{\eta} \frac{Q}{A}$$

CEE 370 L#23

$$v_{true} \equiv v_a = \frac{1}{\eta} v_d$$
 or

M&7 Fau #7 20

M&Z

Velocities Illustrated

Pipe with soil core

.

- An aquifer material of coarse sand has piezometric surfaces of 10 cm and 8 cm above a datum and these are spaced 10 cm apart. If the cross sectional area is 10 cm², what is the linear velocity of the water?
 - Hydraulic gradient:

$$\frac{\Delta h}{L} = \frac{10cm - 8cm}{10cm} = 0.2 \, \frac{cm}{cm}$$

• From the prior table, K for coarse sand is 5.2 x 10⁻⁴, so the Darcy velocity is:

$$v = K \frac{\Delta h}{L} = \left(5.2x 10^{-4} \, \frac{m}{s} \right) 0.2 \, \frac{cm}{cm} = 1.04x 10^{-4} \, \frac{m}{s}$$

• Assuming that the porosity is 30% or 0.3 (prior Table):

$$v'_{water} = \frac{v}{\eta} = \frac{1.04 \times 10^{-4} \, m/s}{0.3} = 3.47 \times 10^{-4} \, m/s$$

See M&Z, example 7.9, part a

- <u>Specific Yield</u> the fraction of water in an aquifer that will drain by gravity
 - Less than porosity due to capillary forces
 - See Table 7-5 in D&M for typical values
- <u>Transmissivity</u> (T) flow expected from a 1 m wide cross section of aquifer (full depth) when the hydraulic gradient is 1 m/m.
 - T=K*D
 - Where D is the aquifer depth and K is hydraulic conductivity

Unconfined aquifer

D&M: Figure 7-31a

Showing cone of depression

Drawdown II

Confined aquifer

D&M: Figure 7-31b

15

Cones of Depression

Conductivity

- Low K
 - Deep, shallow cone

overlapping

David Reckhow

Well in confined aquifer

$$Q = \frac{2\pi K D (h_2 - h_1)}{\ln(r_2 / r_1)}$$

Where: h_x is the height of the piezometric surface at distance " r_x " from the well

In an unconfined aquifer

 D is replaced by average height of water table (h₂+h₁)/2, so:

$$Q = \frac{\pi K (h_2^2 - h_1^2)}{\ln(r_2 / r_1)}$$

See examples: 7-10 and 7-11 in D&M

Contaminant Flow

- Separate Phase flow low solubility compounds
 See D&M section 9-7, pg.389-393
 - Low density:
 - LNAPL light non-aqueous phase liquid
 - High density: HNAPL
- Dissolved contaminant
 - Flows with water, but subject to retardation
 - Caused by adsorption to aquifer materials

Adsorption in Groundwater

- Based on relative affinity of contaminant for aquifer to water
 - Defined by partition coefficient, K_p:

$$K_{p} = \frac{C_{s}(moles_{adsorbed} / kg - soil)}{C_{w}(moles_{dissolved} / L - water)}$$

Equ 2-89, pg 76 in D&M 2nd ed. Similar to Equ 3.32, pg 95 in M&Z

 And more fundamentally the Kd can be related to the soil organic fraction (f_{oc}) and an organic partition coefficient (K_{OC}):

$$K_p = K_{oc} f_{oc}$$

See also pg 392 in D&M 2nd ed. Similar to Equ 3.33, pg 95 in M&Z

Relative Velocities

The retardation coefficient, R, is defined as the ratio of water velocity to contaminant velocity $P_{water} = v_{water}^{'}$

$$R_{f} \equiv \frac{\mathcal{V}_{water}}{\mathcal{V}_{cont}}$$

Equ 9-42, pg 391 in D&M 2nd ed.

 And since only the dissolved fraction of the contaminant actually moves

$$v'_{cont} = v'_{water} \left(\frac{moles_{dissolved}}{moles_{dissolved} + moles_{adsorbed}} \right)$$

David Reckhow

• Note that the fundamental partition coefficient is: $K_{p} \equiv \frac{C_{s}(moles_{adsorbed} / kg - soil)}{C_{w}(moles_{dissolved} / L - water)}$

• So:
$$\frac{moles_{adsorbed}}{moles_{dissolved}} = K_p \left(\frac{Y(L - aquifer / L - water)}{X(L - aquifer / kg - soil)} \right)$$

And then

$$R_f = 1 + K_p \frac{Y}{X}$$

cont

where:

$$Y\left(\frac{L-aquifer}{L-water}\right) = \frac{1}{\eta} \qquad \qquad X\left(\frac{L-aquifer}{kg-soil}\right) = \frac{1-\eta}{\rho_s} = \frac{1}{\rho_b}$$

Where:

- \bullet ρ_s is density of soil particles without pores
 - usually ~2-3 g/cm³
- ρ_b is the bulk soil density with pores

• So, then

$$R_f = 1 + K_p \left(\frac{\rho_s}{\eta(1-\eta)}\right) = 1 + K_p \left(\frac{\rho_b}{\eta}\right)$$

M&Z Equ #7.23

Compare to Equ 9-43, pg 391 in D&M 2nd ed.

See M&Z, example 7.9, part b

$$f_d = \frac{1}{1 + K_p m}$$

Estimation of partition coefficients

• Relationship to organic fraction $K_p = f_{oc} K_{oc}$

and properties of organic fraction

$$K_{oc} = 6.17 \times 10^{-7} K_{ow}$$

combining, we get:

$$K_p = 6.17 x 10^{-7} f_{oc} K_{ow}$$

Octanol:water partition coefficient

$$\begin{pmatrix} mg - tox. \\ \hline mg - tox. \\ \hline mg - tox. \\ \hline m^3 - H_2O \end{pmatrix}$$

Karickhoff et al., 1979; Wat. Res. 13:241

David Reckhow

Octanol:water partitioning

- 2 liquid phases in a separatory funnel that don't mix
 - octanol
 - water
- Add contaminant to flask
- Shake and allow contaminant to reach equilibrium between the two
- Measure concentration in each (K_{ow} is the ratio)

Retardation in Groundwater & solute

movement

$$R_f = 1 + \frac{\rho_b}{\eta} K_p$$

 ρ =Soil bulk mass density η = void fraction

FIGURE 6-27

(a) Percentage of the population served by drinking-water system source. (b) Percentage of drinking-water systems by supply source. (c) Number of drinking-water systems (in thousands) by size. (d) Population served (in millions of people) by drinking-water system size. (Source: 1997 National Public Water Systems Compliance Report. U.S. EPA, Office of Water. Washington, D.C. 20460. (EPA-305-R-99-002). (Note: Small systems serve 25–3300 people; medium systems serve 3301–10,000 people; large systems serve 10,000+ people.)

To next lecture