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Exponential Growth model

where,
X = concentration of organisms at 

time t
t = time
 = proportionality constant or specific 

growth rate, [time─1]
dX/dt = organism growth rate, [mass per 

volume-time]
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Exp. Growth (cont.)
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Exp. Growth Example
A microbial system with an ample substrate and nutrient 
supply has an initial cell concentration, Xo, of 500 mg/L.  
The specific growth rate is 0.5 /hour.

a) Estimate the cell concentration after 6 hours, 
assuming log growth is maintained during the period. 

b) Determine the time required for the microbial 
population to double during this log growth phase.
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Solution I
a)  To determine the microbial concentration after 

6 hours, we substitute into the exp growth model, 
obtaining,

X =  X e  =  500  
mg

L
 x eo

t (0.5/hr x 6  hr)

X =  10,000  
mg

L

Thus, in a period of six hours, the microorganisms increase 20 fold.



CEE 370  Lecture #17 10/4/2019

Lecture #17              Dave Reckhow 4

David Reckhow CEE 370 L#16 7

Solution II
b)  To determine the time for the concentration to double, we 
use the log form.   Also, if the concentration doubles, then 

X

X
 =  2

o
or ln

X

X
 =  t

o


Or, solving for t we obtain,

t =  

ln
X

X
 =  

ln 2

0.5  / hr
o











t =  1.4  hr.

Thus, the microbial population can double in only 1.4 
hours.  By comparison, the human population is currently 
doubling about every 40 years.
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Limitations in population density
 Carrying capacity, K, and the logistic 

growth model:
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Logistic Model (cont.)
 In many books they use different terms 

when applying it to animal dynamics:
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Logistic Growth Example
 Determine 10 day 

population for:
 Initial population: 

X0 = 2 mg/L
 Max growth rate: 

1 day-1

 Carrying capacity: 
5000 mg/L
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Substrate-limited Growth
 Also known as resource-limited growth

 THE MONOD MODEL

where, 
m = maximum specific growth rate, [day-1]
S = concentration of limiting substrate, [mg/L]
Ks = Monod or half-velocity constant, or half

saturation coefficient, [mg/L]

𝑑𝑋
𝑑𝑡

௪௧

≡ 𝜇𝑋 ൌ
𝜇௫𝑆
𝐾௦  𝑆

𝑋

Similar to enzyme kinetic 
model introduced in 
lecture #13

David Reckhow CEE 370 L#16 12

Monod Kinetics

0.5*µm

KS
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Decay term
 With microorganisms, when using a substrate-limited 

growth model, it is also appropriate to consider “decay”
 Decay covers the “cost of doing business”, including the 

energy lost in respiration, cell maintenance & 
reproduction

 The mode is simple first order 

 And combining it with the Monod model
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Substrate model
 Yield coefficient

 And 

 So, combining with the overall growth 
model
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Competition for Substrate
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World Population Growth
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Human Population Projection
 Arithmetic Model
 Exponential Model
 Decreasing Rate of Increase Model
 Graphical extension
 Graphical comparison
 Ratio method
 Other
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Linear Model
P = Po + klt

Time 

kl

P
op

ul
at

io
n

Good for some types of growth, but not all
•Babies growth ~ 2 lb/month
•Linear model predicts 1,320 lb by age 55
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Exponential Model

where,
P = population at time t,
Po = population at time zero,
r (ke) = population growth rate, years-1,
t = time, years.

P =  P  eo
r t

Exponential Functions
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Parameter Estimation: Exponential Model
Ln P  =  Ln P  e

Ln P Ln P r t
o

r t( ) ( )
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Decreasing Rate of Increase Model
P = Po + (Pmax-Po)(1-exp(-ket))

Where: Pmax

is the limiting 
or saturation 
population
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Comparison of Population Models
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Parameter Estimation:
Decreasing Rate of Increase Model

Ln(Pmax-P) = Ln(Pmax-Po) -
kdt

kd

L
n 

(P
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)

Time or delta-t
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Comparison of Population models: 100 yrs.

t  (years)
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Example: World Population Growth

In 1950 the world population was estimated to be 
2.5 billion.  In 1990 it was estimated to be 5.5 billion.  
Assuming this growth rate will be sustained,

a) calculate the world population in the year 
2000

b) determine the year the global population 
will reach 10 billion.
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Solution

We must first calculate the population growth rate, r.  
To do this we convert Equation  into log form:

ln
P

P
 =  r t

o
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Solution, cont.
Now, if we know the population at two different times in 
the past, we can calculate the population growth rate, r.  
We know that the population in 1950 was 2.5 billion, and 
that it was 5.5 billion in 1990.  The time change, t, is 40 
years.  Thus, the population growth rate is,

r =  
ln

P
Po
t

 =  

ln
5.5 x 10
2.5 x 10

40  years

9

9
















r =  0.020  / yr
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Solution, cont.

P =  P  e  =  5.5  x eo
r t 0.020 x (2000 - 1990)

Population in the year 2000?

 2000in  10 x 6.7 = P 9 year

Actual: 6.1 x 109
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Solution, cont.

 t =  
ln

P

P
r

 =  

ln
10  x 10
5.5 x 10

0.020  / yr
o

9

9















 t =  30 years

Year that the population will reach 10 billion

So 1990 + 30 is A.D. 2020

Oxygen Demand
 It is a measure of the amount of “reduced” 

organic and inorganic matter in a water
 Relates to oxygen consumption in a river or 

lake as a result of a pollution discharge
 Measured in several ways

 BOD - Biochemical Oxygen Demand
 COD - Chemical Oxygen Demand
 ThOD - Theoretical Oxygen Demand
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BOD with dilution
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t
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BOD  =  DO  -  DO
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Where
BODt = biochemical oxygen demand at t days, [mg/L]
DOi = initial dissolved oxygen in the sample bottle, 
[mg/L]
DOf = final dissolved oxygen in the sample bottle, [mg/L]
Vb = sample bottle volume, usually 300 or 250 mL, [mL]
Vs = sample volume, [mL]

When BOD>8mg/L

BOD - loss of biodegradable organic 
matter (oxygen demand)
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The BOD bottle curve
 L=oxidizable carbonaceous material remaining to be oxidized
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BOD Modeling
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"L" is modelled as a simple 1st order decay: dL

dt
k L  1

L L eo
k t  1Which leads to:

We get: BOD y L et t o
k t   ( )1 1

BOD y L Lt t o t  And combining with:
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 To next lecture


