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Batch Microbial Growth
 Observed behavior
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Exponential
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Exponential Growth model

where,
X = concentration of organisms at 

time t
t = time
µ = proportionality constant or specific 

growth rate, [time─1]
dX/dt = organism growth rate, [mass per 

volume-time]
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Exp. Growth (cont.)
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Exp. Growth Example
A microbial system with an ample substrate and nutrient 
supply has an initial cell concentration, Xo, of 500 mg/L.  
The specific growth rate is 0.5 /hour.

a) Estimate the cell concentration after 6 hours, 
assuming log growth is maintained during the period. 

b) Determine the time required for the microbial 
population to double during this log growth phase.
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Solution I
a)  To determine the microbial concentration after 

6 hours, we substitute into the exp growth model, 
obtaining,

X =  X e  =  500  mg
L

 x eo
t (0.5/hr x 6  hr)µ

X =  10,000  mg
L

Thus, in a period of six hours, the microorganisms increase 20 fold.
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Solution II
b)  To determine the time for the concentration to double, we 
use the log form.   Also, if the concentration doubles, then 

X
X

 =  2
o

or ln X
X

 =  t
o

µ

Or, solving for t we obtain,

t =  
ln X

X  =  ln 2
0.5  / hr

o









µ

t =  1.4  hr.
Thus, the microbial population can double in only 1.4 
hours.  By comparison, the human population is currently 
doubling about every 40 years.
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Limitations in population density
 Carrying capacity, K, and the logistic 

growth model:
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Logistic Model (cont.)
 In many books they use different terms 

when applying it to animal dynamics:
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Logistic Growth Example
 Determine 10 day 

population for:
 Initial population: 

X0 = 2 mg/L
 Max growth rate: 

1 day-1

 Carrying capacity: 
5000 mg/L
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Substrate-limited Growth
 Also known as resource-limited growth

 THE MONOD MODEL

where, 
µm = maximum specific growth rate, [day-1]
S = concentration of limiting substrate, [mg/L]
Ks = Monod or half-velocity constant, or half

saturation coefficient, [mg/L]

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

≡ 𝜇𝜇𝑋𝑋 =
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆
𝐾𝐾𝑠𝑠 + 𝑆𝑆

𝑋𝑋

Similar to enzyme kinetic 
model introduced in 
lecture #13
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Monod Kinetics

0.5*µm

KS
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Decay term
 With microorganisms, when using a substrate-limited 

growth model, it is also appropriate to consider “decay”
 Decay covers the “cost of doing business”, including the 

energy lost in respiration, cell maintenance & 
reproduction

 The mode is simple first order 

 And combining it with the Monod model
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑑𝑑𝑋𝑋

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

=
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆
𝐾𝐾𝑠𝑠 + 𝑆𝑆

𝑋𝑋 − 𝑘𝑘𝑑𝑑𝑋𝑋



Substrate model
 Yield coefficient

 And 

 So, combining with the overall growth 
model
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𝑌𝑌 ≡
∆𝑋𝑋
∆𝑆𝑆
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𝑌𝑌

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
𝑌𝑌

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆
𝐾𝐾𝑠𝑠 + 𝑆𝑆

𝑋𝑋 − 𝑘𝑘𝑑𝑑𝑋𝑋
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Competition for Substrate
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World Population Growth


[image: image1.wmf]



David Reckhow CEE 370 L#16 17

Human Population Projection
 Arithmetic Model
 Exponential Model
 Decreasing Rate of Increase Model
 Graphical extension
 Graphical comparison
 Ratio method
 Other
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Linear Model
P = Po + kl∆t

Time 

kl

Po
pu

la
tio

n

Good for some types of growth, but not all
•Babies growth ~ 2 lb/month
•Linear model predicts 1,320 lb by age 55
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Exponential Model

where,
P = population at time t,
Po = population at time zero,
r (ke) = population growth rate, years-1,
∆t = time, years.

P =  P  eo
r t∆

Exponential Functions
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Parameter Estimation: Exponential Model
Ln P  =  Ln P  e
Ln P Ln P r t

o
r t( ) ( )

( ) ( )

∆

∆= +0

ke or r

Time  (delta-t) 

Ln
 P

op
ul

at
io

n
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Decreasing Rate of Increase Model
P = Po + (Pmax-Po)(1-exp(-ke∆t))

Where: Pmax
is the limiting 
or saturation 
population

∆t  (years)
0 10 20 30 40 50 60 70 80 90 100

Po
pu

la
tio

n

30000

35000

40000

45000

50000

55000

Decreasing Rate of Increase
Pmax= 50,000

ke = 0.04 yr-1

ke = 0.15 yr-1

ke = 0.01 yr-1
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Comparison of Population Models

∆t  (years)
0 5 10 15 20 25 30

Po
pu

la
tio

n

30000

32000

34000

36000

38000

40000

42000

44000

46000

48000

50000

Decreasing Rate of Increase
Linear

Exponential
ke (r) = 0.014 yr-1

kl = 500 yr-1

ke = 0.04 yr-1

Pmax= 50,000

Po = 33,000 for all
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Parameter Estimation:
Decreasing Rate of Increase Model

Ln(Pmax-P) = Ln(Pmax-Po) -
kd∆t

kd

Ln
 (P

m
ax

-P
)

Time or delta-t
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Comparison of Population models: 100 yrs.

∆t  (years)
0 10 20 30 40 50 60 70 80 90 100

Po
pu

la
tio

n

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000

Decreasing Rate of Increase

Linear

Exponential

ke = 0.04 yr-1

Pmax= 50,000

ke = 0.014 yr-1

kl = 500 yr-1

Po = 33,000 for all
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Example: World Population Growth

In 1950 the world population was estimated to be 
2.5 billion.  In 1990 it was estimated to be 5.5 billion.  
Assuming this growth rate will be sustained,

a) calculate the world population in the year 
2000

b) determine the year the global population 
will reach 10 billion.



David Reckhow CEE 370 L#16 26

Solution

We must first calculate the population growth rate, r.  
To do this we convert Equation  into log form:

ln
P
P

 =  r t
o





 ∆
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Solution, cont.
Now, if we know the population at two different times in 
the past, we can calculate the population growth rate, r.  
We know that the population in 1950 was 2.5 billion, and 
that it was 5.5 billion in 1990.  The time change, ∆t, is 40 
years.  Thus, the population growth rate is,

r =  
ln

P
Po
t

 =  
ln

5.5 x 10
2.5 x 10

40  years

9

9














∆

r =  0.020  / yr
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Solution, cont.

P =  P  e  =  5.5 x eo
r t 0.020 x (2000 - 1990)∆

Population in the year 2000?

 2000in  10 x 6.7 = P 9 year

Actual: 6.1 x 109
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Solution, cont.

∆ t =  
ln

P
P
r

 =  
ln

10  x 10
5.5 x 10

0.020  / yr
o

9

9














∆ t =  30 years

Year that the population will reach 10 billion

So 1990 + 30 is A.D. 2020

http://en.wikipedia.org/wiki/File:World-Population-1800-2100.png
http://en.wikipedia.org/wiki/File:World-Population-1800-2100.png


Oxygen Demand
 It is a measure of the amount of “reduced” 

organic and inorganic matter in a water
 Relates to oxygen consumption in a river or 

lake as a result of a pollution discharge
 Measured in several ways

 BOD - Biochemical Oxygen Demand
 COD - Chemical Oxygen Demand
 ThOD - Theoretical Oxygen Demand

Dave Reckhow (UMass) CEE 577 #12 30



BOD with dilution
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t
i f

s
b

BOD  =  DO  -  DO
V
V









Where
BODt = biochemical oxygen demand at t days, [mg/L]
DOi = initial dissolved oxygen in the sample bottle, 
[mg/L]
DOf = final dissolved oxygen in the sample bottle, [mg/L]
Vb = sample bottle volume, usually 300 or 250 mL, [mL]
Vs = sample volume, [mL]

When BOD>8mg/L
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BOD - loss of biodegradable organic 
matter (oxygen demand)
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The BOD bottle curve
 L=oxidizable carbonaceous material remaining to be oxidized
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BOD Modeling
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"L" is modelled as a simple 1st order decay: dL
dt

k L= − 1

L L eo
k t= − 1Which leads to:

We get: BOD y L et t o
k t≡ = − −( )1 1

BOD y L Lt t o t≡ = −And combining with:
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 To next lecture

http://www.ecs.umass.edu/cee/reckhow/courses/370/slides/370l18.pdf
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