Updated: 16 October 2019

Print version

CEE 370

Environmental Engineering Principles

Lecture #13 Environmental Biology II

Metabolism

Reading: Mihelcic & Zimmerman, Chapter 5

Davis & Masten, Chapter 3

David Reckhow

CEE 370 L#13

Environmental Microbiology

- Types of Microorganisms
 - Bacteria
 - Viruses
 - Protozoa
 - Rotifers
 - Fungi
- Metabolism
- Microbial Disease
- Microbial Growth

David Reckhow

2

Lecture #13 Dave Reckhow 1

CEE 370 L#13

Advantages of Aerobic Systems

If we have aerobic metabolism, rather than fermentation, energy from NADH may be harvested.

$NADH + H^{+} + 3PO_{4}^{3-} + 3ADP + \frac{1}{2}O_{2} \rightarrow NAD + + 3ATP + H_{2}O$

This gives us 6 more ATPs. Then the pyruvate may be further oxidized to carbon dioxide and water, producing 30 more ATPs. The final tally is 38 ATPs or 277 kcal/mole of glucose.

chow CEE 370 L#13

9

Metabolic Classification

Carbon Source

Heterotrophic: other organic matter

Autotrophic: inorganic carbon (CO₂)

Energy Source (electron donor)

Chemosynthetic: chemical oxidation

Photosynthetic: light energy

Terminal Electron Acceptor

Aerobic: oxygen

Anaerobic: nitrate, sulfate

Fermentative: organic compounds

CEE 370 L#13

11

Aerobic Respiration

A Redox reaction

Oxidation of Carbon

$$C(H_2O) + H_2O \rightarrow CO_2 + 4H^+ + 4e^-$$

Reduction of oxygen or some other terminal electron acceptor

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$

CEE 370 L#13

Other TEA: Anaerobic Respiration

Nitrate

$$C(H_2O) + NO_3^- \rightarrow N_2 + CO_2 + HCO_3^- + H_2O$$

Manganese

$$C(H_2O) + Mn^{+4} \rightarrow Mn^{+2} + CO_2 + H_2O$$

Iron

$$C(H_2O) + Fe^{+3} \rightarrow Fe^{+2} + CO_2 + H_2O$$

Sulfate

$$C(H_2O) + SO_4^{-2} \rightarrow H_2S + CO_2 + H_2O$$

Fermentation

$$\begin{array}{c} C(H_2O) \rightarrow CH_4 + CO_2 \\ & \text{methanogenesis} \end{array}$$

David Reckhow

CEE 370 L#13

7 Lecture #13 Dave Reckhow

Ecological Redox Sequence

13

Energetics Cont.

- Energy Balance
 - Cell synthesis (R_c)
 - Energy (R_a)
 - Electron acceptor (R_d)

Reaction number	Half reaction		ΔG ⁰ (W)* kJ per electron equivalent
	Reactions for electro	n donors (R_d)	
	Inorganic donors (autotrophic reactions):	-	
22.	${}_{6}^{1}SO_{4}^{2}$ " + ${}_{3}^{4}H$ + e	$=\frac{1}{6}S + \frac{2}{3}H_2O$	19.48
23.	$\frac{1}{8}SO_4^{2-} + \frac{19}{16}H^+ + e^-$	$=\frac{1}{16}H_3S + \frac{1}{16}HS^- + \frac{1}{2}H_3O$	21.28
24.	$\frac{1}{4}SO_4^{2-} + \frac{5}{4}H^+ + e^-$	$=\frac{1}{8}S_{2}O_{1}^{2} + \frac{5}{8}H_{2}O$	21.30
25.	H++ e-	$=\frac{1}{7}H_{2}$	40.46
26.	$\frac{1}{2}SO_4^{2-} + H^+ + e^-$	$=\frac{1}{7}SO_3^{2-} + \frac{1}{2}H_2O$	44.33

$$R = f_s R_c + f_e R_a - R_d$$

From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978

CEE 370 L#13

17

f-values and Yield TABLE 6-5 Typical values for $f_{s(max)}$ for bacterial reactions

- Portions of electron donor used for:
 - Synthesis (f_s)
 - Energy (f_e)
- Values are for rapidly growing cells

Electron donor	Electron acceptor	$f_{s(max)}$
Heterotrophic reactions		
Carbohydrate	O_2	0.72
Carbohydrate	NO_3^-	0.60
Carbohydrate	SO ₄ ² -	0.30
Carbohydrate	CO ₂	0.28
Protein	O_2	0.64
Protein	CO,	0.08
Fatty acid	O_2	0.59
Fatty acid	SO_4^{2-}	0.06
Fatty acid	CO_2	0.05
Methanol	NO_3^-	0.36
Methanol	CO_2	0.15
Autotrophic reactions		
S	O_2	0.21
$S_2O_3^{2-}$	0,	0.21
$S_2O_3^2$	NO ₃	0.20
NH ⁺	O ₂	0.10
H ₂	O ₂	0.24
H ₂	CO ₂	0.04
Fe ²⁺	0, -	0.07

From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978

David Reckhow

Lecture #13 Dave Reckhow 9

CEE 370 L#13

•

$$\begin{array}{c} Cl \\ C = C \\ H \end{array} \xrightarrow{Cl} + \frac{1}{2}O_2 \xrightarrow{TDO} \begin{array}{c} Cl \\ C = C \\ \end{array} \xrightarrow{Cl} Cl$$

From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978

_ .._ ...

CEE 370 L#13

19

Basic Enzyme Kinetics

Note that some references use k_2 for k_{-1} , and k_3 for k_2

Irreversible

$$E + S \stackrel{k_1}{\leftarrow} ES \stackrel{k_2}{\rightarrow} E + P$$

- Single intermediate
 - The overall rate is determined by the RLS, k₂

$$r \equiv -\frac{d[S]}{dt} = \frac{d[P]}{dt} = k_2[ES]$$

 But we don't know [ES], so we can get it by the SS mass balance

$$\frac{d[ES]}{dt} = 0 = k_1[E][S] - k_{-1}[ES] - k_2[ES]$$

Again, we only know [E_o] or [E_{tot}], not free [E], so:

$$0 = k_1([E_o] - [ES])[S] - k_{-1}[ES] - k_2[ES]$$

David Reckhow

CEE 370 L#13

23

Reactants, products and Intermediates

- Simple Progression of components for simple single intermediate enzyme reaction
 - Shaded block shows steady state intermediates
 - Assumes [S]>>[E]_t
 - From Segel, 1975; Enzyme Kinetics

David Reckhow

Basic Enzyme Kinetics II

And solving for [ES],

$$k_1[ES][S] + k_{-1}[ES] + k_2[ES] = k_1[E_a][S]$$

$$[ES] = \frac{k_1[E_o][S]}{k_1[S] + k_{-1} + k_2}$$

$$[ES] = \frac{[E_o][S]}{[S] + \frac{k_{-1} + k_2}{k_1}}$$

CEE 370 L#13

25

Michaelis-Menten

Irreversible

Irreversible
$$E + S \stackrel{k_1}{\leftarrow} ES^{k_2} \rightarrow E + P$$

• Single intermediate

$$r = \frac{d[P]}{dt} = k_{2}[ES]$$

$$[ES] = \frac{[E_{o}][S]}{[S] + \frac{k_{-1} + k_{2}}{k_{1}}}$$

$$r = \frac{d[P]}{dt} = \frac{k_{2}[E_{o}][S]}{\frac{k_{-1} + k_{2}}{k_{1}} + [S]} = \frac{r_{\max}[S]}{K_{s} + [S]}$$

David Reckhow

CEE 370 L#13

Substrate and growth

If we consider Y

$$r \equiv \frac{d[P]}{dt} = -\frac{d[S]}{dt} = \frac{1}{Y} \frac{dX}{dt}$$

We can define a microorganism-specific substrate utilization rate, U

$$U \equiv \frac{r}{X} = \frac{dX}{dt} / _{YX} \equiv \frac{\mu}{Y}$$

And the maximum rates are then

$$U_{\max} \equiv k \equiv \frac{\mu_{\max}}{Y}$$

$$U = \frac{1}{X} \frac{d[S]}{dt} = \frac{k[S]}{K_s + [S]}$$

and
$$\mu = \frac{1}{X} \frac{d[X]}{dt} = \frac{\mu_{\text{max}}[S]}{K_s + [S]}$$

CEE 370 L#13

29

