Updated: 2 October 2019

Print version

CEE 370

Environmental Engineering Principles

Lecture #10 Energy Balances

Reading: Mihelcic & Zimmerman, Section 4.2 & 4.3

Davis & Masten, Chapter 4

CEE 370 L#10

1

Energy Cannot Be Created or Destroyed (It just changes forms)

Generic: KNO₃ + C + S → K⁺ + {S, SO₂, SO₄-²} + {CO₂, CO₃-²} + N₂ A specific example: $10KNO_3 + 8C + 3S \rightarrow 2K_2CO_3 + 3K_2SO_4 + 6CO_2 + 5N_2$

CEE 370 L#10

Energy Balance

- First law of thermodynamics
 - Energy can be neither created nor destroyed
 - But the form can certainly change
- Thermal Energy
 - Characterized by
- $^{\Delta}H = Mc_{p}{}^{\Delta}T$
- Temperature (T) and
- Specific heat capacity (c_p)

David Reckhow

CEE 370 L#13

3

Heat Transfer

- Conduction
 - Transfer of energy without mass flux

- Convection
 - Energy is carried by molecules in bulk motion

Convection currents

Cooler sader descends

water rises

David Reckhow

CEE 370 L#13

Lecture #10 Dave Reckhow 2

4

Energy Balance

Much like material balances

(Change in internal plus external energy per unit time) = (energy flux in) – (energy flux out)

$$\frac{dE}{dt} = E_{in} - E_{out}$$

CEE 370 L#10

7

discharge pipe

Example 4.9

lower heating element

- Heating Water: Scenario 1
 - 40 gal capacity, cold water is 10C
 - 5 kW is max heating rate
 - Flow is 2 gal/min
 - Assume 100% efficiency & steady state

$$\frac{dE}{dt} = 0 = E_{in} - E_{out}$$

$$0 = (m_{H_2O}cT_{in} + 5kW) - (m_{H_2O}cT_{out})$$

CEE 370 L#10

8

Example 4.9 cont

$$0 = \left(m_{H_2O}cT_{in} + 5kW\right) - \left(m_{H_2O}cT_{out}\right)$$
$$0 = m_{H_2O}c(T_{in} - T_{out}) + 5kW \qquad \longleftarrow \text{Note error in book}$$

Note that c=4184J/kg°C and 1W=1J/s

$$0 = \frac{2 \ gal \ H_2O}{min} x \frac{3.785 \ L}{gal} x \frac{1.0 \ kg}{L} x \frac{4184J}{kg^{\circ}C} (T_{in} - T_{out}) + \frac{5000J}{s} x \frac{60s}{min}$$
$$0 = 3.16x10^4 \frac{J}{min^{\circ}C} (T_{in} - T_{out}) + 3.00x10^5 \frac{J}{min}$$
$$(T_{in} - T_{out}) = \frac{3.00x10^5}{3.16x10^4} \text{°C} = 9.5 \text{°C}$$

If T_{in} is 10°C, then T_{out} is 19.5°C

~67°F

CEE 370 L#10

9

Example 4.10

How long should you wait to get a temperature of 54°C (~129°F)?

CEE 370 L#10 1

