

Neversink	k Ri	vei		
← → C ☆ waterdata.usgs.gov/ny/nwis/inventory/?site_no=01435000				*
ISGS 01435000 NEVERSTNK RIVER NEAR C				
	a for this site	SUMMARY OF ALL	AVAILABI P	E DATA GO
Stream Site	and this are a	COMPACT OF ALL		
DESCRIPTION: Latitude 4195124". Longitude 74°35'24" NAD83 Suillvan County, New York, Hydrologic Unit 02040104 Drainage area: 66.6 square miles Datum of gage: 1,521.67 feet above NAVD88. AVAILABLE DATA:				
Data Type	Begin Date	End Date	Count	
Current / Historical Observations (availability statement)	1987-04-01	2019-09-13	L	
Temperature water degrees Celsius	2012-01-12	2019-09-12	8262	
Discharge, cubic feet per second	1937-11-01	2019-09-12	29118	
Daily Statistics	,			
Temperature, water, degrees Celsius	2012-01-12	2019-02-28	2554	
Discharge, cubic feet per second	1937-11-01	2018-09-30	28772	
Monthly Statistics				
Temperature, water, degrees Celsius	2012-01	2019-02		
Discharge, cubic feet per second	1937-11	2018-09		
Annual Statistics	1			
Temperature, water, degrees Celsius	2012	2019		
Discharge, cubic feet per second	1938	2018		
Peak streamflow	1938-07-22	2018-08-17	80	
Field (Leb water evelity complete	1950-11-25	2019-08-13	800	
Preior Lab Water-quality samples	1954-04-06	2019-08-06	1399	
Revisions	2005	2010	14	
Revisions	Available (Si	(dmeser	les.0)	

Earth's Atmosphere										
Table 2-2. Composition of the Atmosphere*										
Compound	Concentration (% volume or moles)	Concentration (ppm _v)								
Nitrogen (N ₂)	78.1	781.000								
Oxygen (O_2)	20.9	209.000								
Argon (Ar)	0.93	9.300								
Carbon dioxide (CO_2)	0.035	350								
Neon (Ne)	0.0018	18								
Helium (He)	0.0005	5								
Methane (CH ₄)	0.00017	1.7 🧲	GHGs;							
Krypton (Kr)	0.00011	1.1	increasing							
Hydrogen (H ₂)	0.00005	0.500								
Nitrous oxide (N ₂ O)	0.000032	0.316 🧲								
Ozone (O ₃)	0.000002	0.020								
Data from Graedel and Crut	zen, 1993.	······								
*Values represent concentra	Values represent concentrations in dry air at remote locations.									
David Reckhow	CEE 370 L#4		27							

Greenhouse Gases							
Compound	CO ₂ e Multiplier	2011 level	CO ₂ e				
Carbon dioxide (CO ₂)	1	391 ppm	391 ppm				
Methane (CH_4)	25	1,813 ppb	45 ppm				
Nitrous Oxide (N ₂ O)	298	324 ppb	97 ppm				
Hydrofluorocarbons $(C_xH_aF_yO_z)$	124-14,800						
Perfluorocarbons ($C_x F_y O_z$)	7,390-12,200						
Sulfur Hexafluoride (SF ₆)	22,800						
$CO_2e = greenhouse gas equ$	com uivalents in units	pare with tables 2.2 of carbon dic	and 2.4 in M&Z				
David Reckhow	CEE 370 L#4		2				

Oxidation States									
Stumm & Morgan, 199 Table 8.1, pg. 427									
 Table 8.1. Oxidation State Rules for Assigning Oxidation States: (1) The oxidation state of a monoatomic substance is equal to its electronic charge. (2) In a covalent compound, the oxidation state of each atom is the charge remaining on the atom when each shared pair of electron is assigned completely to the more electronegative of the two atoms sharing them. An electron pair shared by two atoms of th same electronegativity is split between them. (3) The sum of oxidation states is equal to zero for molecules, and for ions is equal to the formal charge of the ions. Examples: 									
is assign same el (3) The sun <i>Examples:</i>	ed completely to the more electronega ectronegativity is split between them. n of oxidation states is equal to zero fo	ative of the two ato	ms sharing them. An electr	on pair shared by al charge of the i	y two atoms of the				
is assign same el (3) The sun Examples:	ed completely to the more electronega ectronegativity is split between them. n of oxidation states is equal to zero fo Nitrogen Compounds	tive of the two ato or molecules, and for Sulfu	ms sharing them. An electr or ions is equal to the form ir Compounds	on pair shared by al charge of the i Carbon	y two atoms of the tions.				
is assign same el (3) The sun Examples: Substance	ed completely to the more electronega ectronegativity is split between them. n of oxidation states is equal to zero for Nitrogen Compounds Oxidation States	tive of the two ato or molecules, and for Sulfu	ms sharing them. An electr or ions is equal to the form: r Compounds Oxidation States	on pair shared by al charge of the i Carbon Substance	y two atoms of the ions. Compounds Oxidation States				
is assigned as a same element (3) The surface	hed completely to the more electronegativity is split between them. In of oxidation states is equal to zero for <u>Oxidation States</u> N = -III, H = +I N = 0 N = +III, O = -II N = +V, O = -II N = -III, C = +II, H = +I S = -I, C = +III, N = -III	tive of the two ato for molecules, and for Substance H_2S $S_8(s)$ $SO_3^2^-$ $SO_4^2^-$ $S_2O_3^{2-}$ $S_4O_6^{2-}$ $S_4O_6^{2-}$	ms sharing them. An electr or ions is equal to the form: $\frac{\text{Oxidation States}}{\text{S} = -\text{II}, \text{ H} = +\text{I}}$ $\frac{\text{S} = 0}{\text{S} = +\text{IV}, \text{ O} = -\text{II}}$ $\frac{\text{S} = +\text{VI}, \text{ O} = -\text{II}}{\text{S} = +\text{II}, \text{ O} = -\text{II}}$ $\frac{\text{S} = +\text{II}, \text{ O} = -\text{II}}{\text{S} = +2.5, \text{ O} = -\text{II}}$	Carbon Substance HCO3 HCO0H C6H12O6 CH3OH CH4 C6H5COOH	$\frac{\text{Compounds}}{\text{Oxidation States}}$ $\frac{\text{C} = +\text{IV}}{\text{C} = +\text{II}}$ $\frac{\text{C} = 0}{\text{C} = -\text{II}}$ $\frac{\text{C} = -\text{IV}}{\text{C} = -2/7}$				

Tom vs Miocrocystis Tom Brady Microcystis aeruginosa											
 No ability to produce toxins 					 Can make many types of cyanotixins 						
Tom10Microcystis11				1							
	CE										

