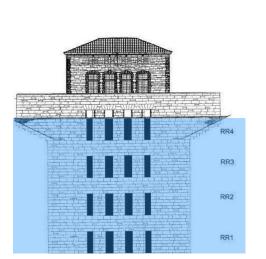
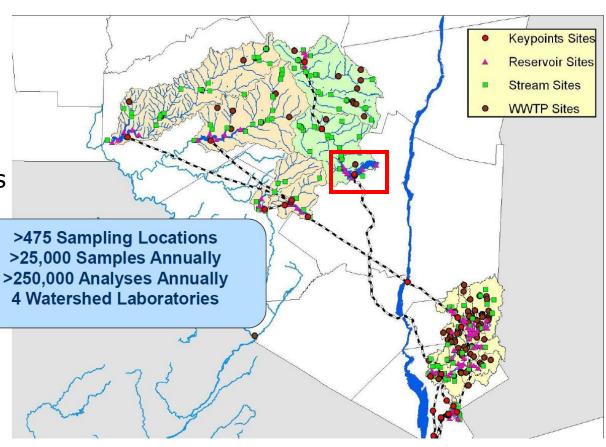
CEE 370 Environmental Engineering Principles

Lecture #5 Environmental Chemistry III: Kinetics & Activity


Reading: Mihelcic & Zimmerman, Chapter 3


Davis & Masten, Chapter 2 Mihelcic, Chapt 3.1

NYC Watershed Monitoring

- Operational Strategies
 - Select or bypass reservoirs
 - Select intake locations
 - Select optimal depth

From: Bader & Emery, WQTC, Nov 2015

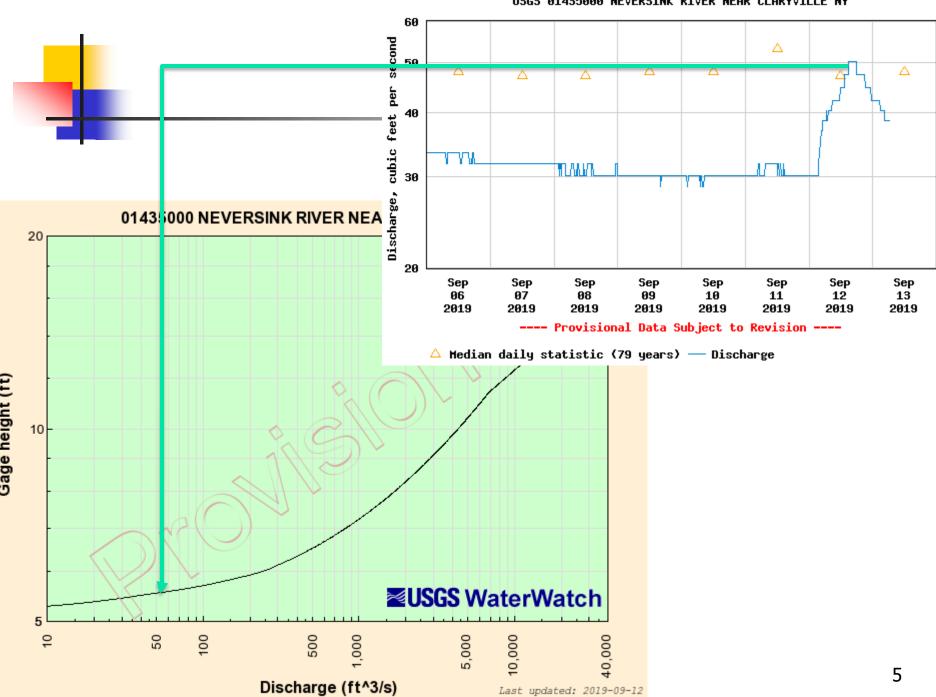
Rondout Reservoir

Fed by many streams of varying size

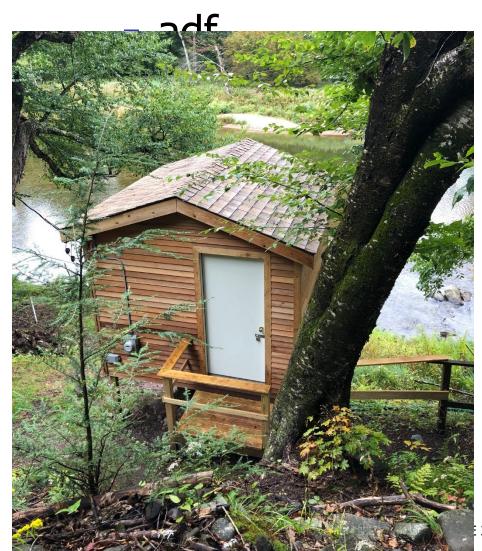
USGS 01435000 NEVERSINK RIVER NEAR CLARYVILLE NY

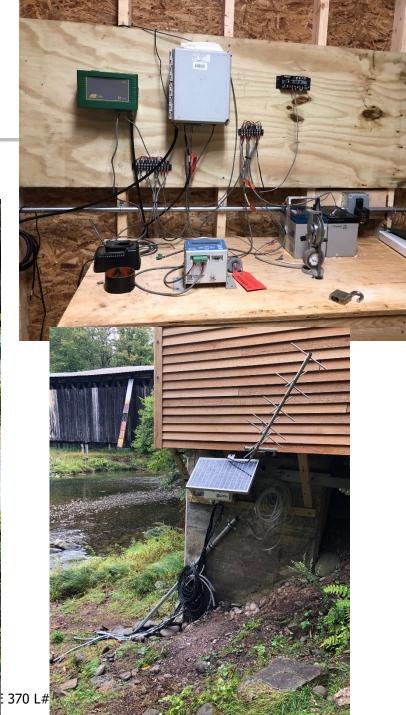
Available data for this site SUMMARY OF ALL AVAILABLE DATA

▼ GO


Stream Site

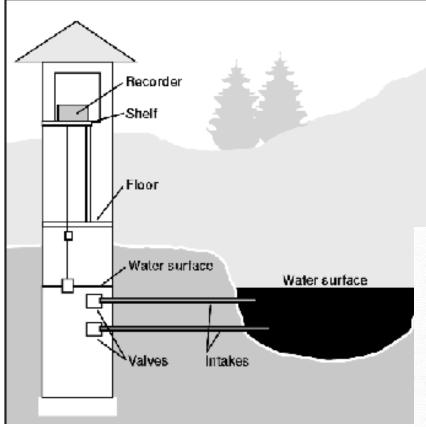
DESCRIPTION:

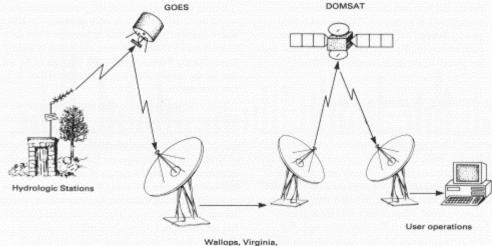

Latitude 41°53'24", Longitude 74°35'24" NAD83 Sullivan County, New York, Hydrologic Unit 02040104 Drainage area: 66.6 square miles Datum of gage: 1,521.67 feet above NAVD88.


AVAILABLE DATA:

Data Type		Begin Date	End Date	Count
Current / Historical Observations	(availability statement)	1987-04-01	2019-09-13	
Daily Data				
Temperature, water, degrees Celsius		2012-01-12	2019-09-12	8262
Discharge, cubic feet per second		1937-11-01	2019-09-12	29118
Daily Statistics				
Temperature, water, degrees Celsius		2012-01-12	2019-02-28	2554
Discharge, cubic feet per second		1937-11-01	2018-09-30	28772
Monthly Statistics				
Temperature, water, degrees Celsius		2012-01	2019-02	
Discharge, cubic feet per second		1937-11	2018-09	
Annual Statistics				
Temperature, water, degrees Celsius		2012	2019	
Discharge, cubic feet per second		1938	2018	
Peak streamflow		1938-07-22	2018-08-17	80
Field measurements		1950-11-25	2019-08-13	800
Field/Lab water-quality samples		1954-04-06	2019-08-06	1399
Water-Year Summary		2005	2018	14
Revisions	Available (site:1) (timeseries:0)			

NYC & USGS





USGS Gaging Stations

Hardware & telemetry

Command and

Data Acquisition Center

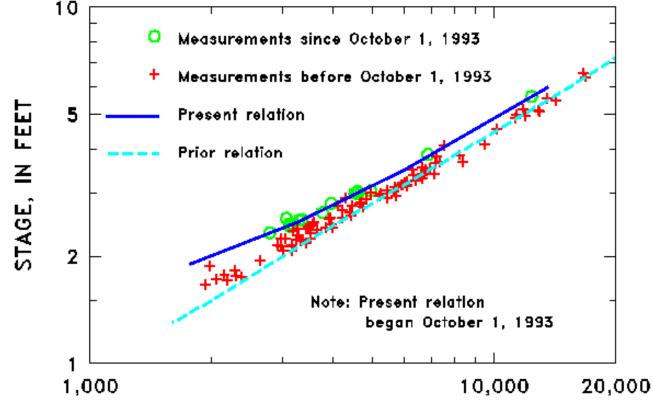
Current Meter Deployment

Current meter and weight suspended from a bridge crane

Wading rod and current meter used for measuring the discharge of a river

Hach FH950 flow r

Images: www.hach.com



CEE 577

Stage vs Discharge

 Sections of stage-discharge relations for the Colorado River at the Colorado--Utah State

Wetlands (WOTUS)

Protecting upland areas to protect downstream water

Friday, September 13, 2019 | DAILY HAMPSHIRE GAZETTE RO

Trump administration drops Obama-era water protection

Regulation covered upstream tributaries. wetlands

> By JOHN FLESHER Associated Press

TRAVERSE CITY, Mich. -The Trump administration revoked an Obama-era regulation Thursday that shielded many U.S. wetlands and streams from pollution but was opposed by developers and farmers who said it hurt economic development and infringed on property rights.

Environmental groups criticized the administration's action, the latest in a series of moves to roll back environmental protections put into place under President Barack Obama.

The 2015 Waters of the United States rule defined the

waterways subject to federal quires landowners to obtain regulation. Scrapping it "puts an end to an egregious power oping or polluting navigable grab, eliminates an ongoing patchwork of clean water regulations and restores a longstanding and familiar regulatory framework," Environmental Protection Agency chief Andrew Wheeler said at a news conference in Washington, D.C.

Wheeler and R.D. James, and after rainfall assistant secretary of the Army for civil works, signed a many of those smaller, seemdocument overturning the rule and temporarily restoring an earlier regulatory system that emerged after a 2006 ruling from a sharply divided Supreme Court.

The agencies plan to adopt a new rule by the end of the year that will define protected waterways more narrowly than the Obama policy.

federal permits before develwaterways such as rivers and lakes. But disputes have long persisted over what other waters are subject to regulation - particularly wetlands that don't have a direct connection to those larger waters, plus small headwater streams and channels that flow only during

Environmentalists contend ingly isolated waters are tributaries of the larger waterways and can have a significant effect on their quality. Denying them federal protection would leave millions of Americans with less safe drinking water and allow damage of wetlands that prevent flooding, filter pollutants and provide habitat for a multitude of fish, waterfowl The Clean Water Act re- and other wildlife, they said.

CFF 37 David Reckhow

Protecting the natural resources

Common Constituents

- N, P, and S containing compounds are often expressed in terms of their elemental concentration
- Examples
 - 66 mg of (NH₄)₂SO₄ added to 1 L of water
 - 85 mg of NaNO₃ added to 1 L of water

See also example 2.13, on pg. 51 of Mihelcic & Zimmerman 13

Example

- Consider a solution of Ammonium Sulfate prepared by dissolving 66 g of the anhydrous compound in water and diluting to 1 liter.
 What is the concentration of this solution in:
 - a) g/L?
 - b) moles/L?
 - c) equivalents/L?
 - d) g/L as sulfate?
 - e) g/L as N?

Periodic Table of the Elements

				•	•				•••	. .	•••			••••					
	1 IA																	18 VIIIA	
	11					Atomic Number												2	
	Hydrogen	2					ŀ	┫ ←	Symbol				13	14	15	16	17	He	
	1.008	IIA 4				Name	1.0	ogen 08 ←	Atomic Weight				IIIA 5	IVA 6	VA 7	VIA 8	VIIA 9	4.0026 2	
	Ľi	Вe				Electrons per shell	→	1					В	Ċ	Ń	Ô	F	Ne	
	Lithium 6.94	Beryllium 9.0122		matter (color of na		category in the me	tal-metalloid-no		or of background) Metalloids	III link	nawa ahamiaal n	roportino	Boron 10.81	Carbon 12.011	Nitrogen 14.007	Oxygen 15.999	Fluorine 18.998	Neon 20.180	
	2-1	12	UAS LIC	ZOID SOLID UNKN	- A	ikali metals Ikaline earth meta ransition metals	als Actinides		Reactive nonm		nown chemical p	roperties	2-3 13	14	2-5 15	16	17	2-8	
	Na	Mg											Al	Si	P	S	Cl	Ar	
	Sodium 22.98976928 2-8-1	Magnesium 24.305 2-8-2	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	Aluminium 26.982 2-8-3	Silicon 28.085 2-8-4	Phosphorus 30.974 2-8-5	Sulfur 32.06 2-8-6	Chlorine 35.45 2-8-7	Argon 39.948 2-8-8	
	19 K	Ca	Sc	722 Ti	23 V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr Kr	
	Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54,938044	Iron 55.845	Cobalt 58.933	Nickel 58.693	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74,922	Selenium 78.971	Bromine 79.904	Krypton 83.798	
H	2-8-8-1	2-8-8-2	2-8-9-2	2-8-10-2	2-8-11-2	2-8-13-1 42	2-8-13-2	2-8-14-2	2-8-15-2 45	2-8-16-2	2-8-18-1	2-8-18-2	2-8-18-3 49	2-8-18-4	2-8-18-5	2-8-18-6	2-8-18-7	2-8-18-8	
	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe	
	Rubidium 85.4678 2-8-18-8-1	Strontium 87.62 2-8-18-8-2	Yttrium 88.90584 2-8-18-9-2	Zirconium 91.224 2-8-18-10-2	Niobium 92.90637 2-8-18-12-1	Molybdenum 95.95 2-8-18-13-1	Technetium (98) 2-8-18-13-2	Ruthenium 101.07 2-8-18-15-1	Rhodium 102.91 2-8-18-16-1	Palladium 106.42 2-8-18-18	Silver 107.87 2-8-18-18-1	Cadmium 112.41 2-8-18-18-2	Indium 114.82 2-8-18-18-3	Tin 118.71 2-8-18-18-4	Antimony 121.76 2-8-18-18-5	Tellurium 127.60 2-8-18-18-6	lodine 126.90 2-8-18-7	Xenon 131.29 2-8-18-18-8	
	55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
	Cs Caesium	Ba	57-71 Lanthanides	Hf Hafnium	Ta	Tungsten 183.84	Re	0s Osmium	Iridium	Pt	Au	Hg	TL Thallium	Pb	Bi	Polonium	At	Rn	
	Caesium 132.90545196 2-8-18-18-8-1	137.327 2-8-18-18-6-2		178.49 2-8-18-32-10-2	180.94788 2-8-18-32-11-2	2-8-18-32-12-2	186.21 2-8-18-32-13-2	190.23 2-8-18-32-14-2	192.22 2-8-18-32-15-2	195.08 2-8-18-32-17-1	196.97 2-8-18-32-18-1	200.59 2-8-18-32-18-2	204.38 2-8-18-32-18-3	207.2 2-8-18-32-18-4	208.98 2-8-18-32-18-5	(209) 2-8-18-32-18-6	(210) 2-8-18-32-18-7	(222) 2-8-18-32-18-8	
	Fr	ка	89-103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FL	Mc	Lv	Ts	Οg	
	Francium (223)	Radium (226)	Actinides	Rutherfordium (267) 2-8-18-32-32-10-2	Dubnium (268)	Seaborgium (269)	Bohrium (270)	Hassium (277)	Meitnerium (278) 2-8-18-32-32-15-2	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (290)	Livermorium (293)	Tennessine (294)	Oganesson (294)	
	2-8-18-32-18-8-1	2-8-18-32-18-8-2		2-8-18-32-32-10-2	2-8-18-32-32-11-2	2-8-18-32-32-12-2	2-8-18-32-32-13-2	2-8-18-32-32-14-2	2-8-18-32-32-15-2	2-8-18-32-32-17-1	2-8-18-32-32-17-2	2-8-18-32-32-18-2	2-8-18-32-32-18-3	2-8-18-32-32-18-4	2-8-18-32-32-18-5	2-8-18-32-32-18-6	2-8-18-32-32-18-7	2-8-18-32-32-18-8	
			57	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	D۷	Ho	Ër	Tm	Yb	Lu		
			Lanthanum	Cerium 140.12	Praseodymium 140.91	Neodymium 144.24	Promethium	Samarium 150.36	Europium 151.96	Gadolinium 157.25	Terbium 158.93	Dysprosium 162.50	Holmiun 164.93	Erbium 167.26	Thulium 168.93	Ytterbium 173.05	Lutetium 174.97		
			2-8-18-18-9-2	2-8-18-19-9-2 90	2-8-18-21-8-2 91	2-8-18-22-8-2 92	(145) 2-8-18-23-8-2 93	2-8-18-24-8-2	2-8-18-25-8-2 95	2-8-18-25-9-2 96	2-8-18-27-8-2 97	2-8-18-28-8-2	2-8-18-29-8-2 99	2-8-18-30-8-2	2-8-18-31-8-2 101	2-8-18-32-8-2	2-8-18-32-9-2 103		
			Ac	Th	Pa	U	Nρ	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

Uranium 238.03 2-8-18-32-21-9-2 Neptunium (237) 2-8-18-32-22-9-2

- a) 66 g/L
- b) The gram formula weight of ammonium sulfate is 132 g/mole. So, using equation 2.7, on gets:
 - Molarity = (66 g/L)/(132 g/mole) = 0.5 moles/L or 0.5 M.
- c) Without any specific information regarding the use of this solution, one might simply presume that either the sulfate group or the ammonium group will be the reacting species. In either case, Z should be equal to two (product of the oxidation state times the number of groups). So:
 - Normality = 0.5 moles/L * 2 equivalents/mole
 - = 1 equivalent/L or 1.0 N or N/1.

• d) The GFW for sulfate is:

- GFW = 32 + 4*16 = 96.
- The molarity of sulfate is:
 - Molarity = $0.5 \text{ moles-}(NH_4)_2SO_4/L * 1 \text{ mole-} SO_4/\text{mole-}(NH_4)_2SO_4$
 - $= 0.5 \text{ moles-SO}_4/L$
- Then, one gets:
 - mass/L = Molarity * GFW = $0.5 \text{ moles-SO}_4/L$ * $96 \text{ g-SO}_4/\text{mole-SO}_4$
 - $= 48 \text{ g-SO}_4/\text{L}$

- e) The GFW for nitrogen is simply 14:
 - The molarity of nitrogen is:

```
Molarity = 0.5 \text{ moles-}(NH_4)_2SO_4/L *
2 moles-N/mole-(NH_4)_2SO_4
```

- = 1 mole-N/L
- Again, one gets:
 - mass/L = Molarity * GFW = 1 mole-N/L * 14 g-N/mole-N
 - $= 14 \text{ g-N/L} \text{ or } 14 \text{ g NH}_3\text{-N/L}$

David Reckhow CEE 370 L#4 18

Calcium carbonate units

- Used for major ion concentrations in drinking waters
 - Alkalinity
 - Hardness
- Since CaCO₃ is divalent (Z=2) and its GFW is 100 g, its GEW is 50 g
 - 50 g/equivalent or 50 mg/meq
 - 50,000 mg/equivalent

See also example 2.14, on pg. 52 of Mihelcic & Zimmerman

Ionic Substances

- Properties in water
 - One part of molecule (the "metal", forming a cation) entirely gives up an electron to the other (forming an anion)
 - Frequently these contain alkali metals or halogens: disparate electronegativities
- Examples
 - Simple salts: NaCl, KNO₃
 - Strong acids/bases: HCl, HNO₃, NaOH

Gas samples (compressible)

 $\frac{0.056mg \text{ Ozone}}{1m^3 \text{ air}}$

- Could be converted to a ppm_m basis
 - But this would change as we compress the air sample
- Could also be converted to a ppm_v basis
 - Independent of degree of compression
 - But now we need to convert mass of ozone to volume of ozone

Ideal Gas Law

By definition:

$$n = \frac{mass(g)}{GFW}$$

- An ideal gas
 - Will occupy a certain fixed volume as determined by:

$$PV = nRT$$

$$V = n \frac{RT}{P} = \frac{mass(g)}{GFW} \frac{RT}{P}$$

regardless of the nature of the gas

- Where:
 - P=pressure
 - V=volume
 - n=number of moles
 - T=temp
 - R=universal gas constant=0.08205 L-atm/mole-oK
 - GFW=gram formula weight

$$=22.4 L$$
 at 1 atm, 273.15°K

Convert mass to moles

- Now we know that ozone's formula is O₃
 - Which means it contains 3 oxygen atoms
 - Therefore the GFW = 3x atomic weight of oxygen in grams or 48 g/mole

 $\frac{0.056mg \text{ Ozone}}{1m^3 \text{ air}}$

- n=mass(g)/GFW
- $n=0.056x10^{-3}g/(48g/mole)$
- n=0.00117x10⁻³ moles

 $\frac{0.00117x10^{-3} moles \text{ Ozone}}{1m^3 \text{ air}}$

Now determine ppm_v

$$ppm_{v} = \frac{volume_{ozone}}{volume_{air}}$$

$$= \frac{0.00117x10^{-3} moles x22.4L/mole}{1m^{3} air}$$

$$= \frac{0.026x10^{-3} L Ozone}{1x10^{3} L air}$$

$$= 0.026 ppm_{v} O_{3} in air$$

$$= 26 ppb_{v} O_{3} in air$$

Mole & volume fractions

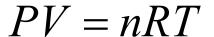
$$V_{i} = n_{i} \frac{RT}{P}$$

$$V_{total} = n_{total} \frac{RT}{P}$$

Defined as:

mole fraction

- Based on the ideal gas law:
 - The volume fraction (ratio of a component gas volume to the total volume) is the same as the mole fraction of that component V
 - Therefore:


Defined as: Volume fraction

• And since the fraction of the total is one-millionth of the number of ppm: $V_1 = n_1$

$$10^{-6} ppm_v \equiv \frac{V_i}{V_{total}} = \frac{n_i}{n_{total}}$$

Partial pressures

$$P = \frac{n}{V}RT$$

- Based on the ideal gas law:
 - And defining the partial pressure (P_i) as the pressure a component gas (i) would exert if all of the other component gases were removed.

$$P_i = \frac{n_i}{V_{total}} RT$$

• We can write:
$$P_i = \frac{n_i}{V_{total}} RT$$
 and $P_{total} = \frac{n_{total}}{V_{total}} RT$

• Which leads to: $P_i = n_i$

$$\frac{P_i}{P_{total}} = \frac{n_i}{n_{total}}$$

$$P_i = P_{total} \frac{n_i}{n_{total}} = P_{total} 10^{-6} ppm_v$$

Try example 2.6, on pg. 47 of Mihelcic &

Earth's Atmosphere

Divide by 100 and you get the partial pressure for a total pressure of 1 atm.

Table 2-2. Composition of the Atmosphere*

Compound	Concentration (% volume or moles)	Concentration (ppm_V)	
Nitrogen (N ₂)	78.1	781,000	
Oxygen (O ₂)	20.9	209,000	
Argon (Ar)	0.93	9,300	
Carbon dioxide (CO ₂)	0.035	350	
Neon (Ne)	0.0018	18	
Helium (He)	0.0005	5	CUIC
Methane (CH ₄)	0.00017	1.7	GHGs;
Krypton (Kr)	0.00011	1.1	increasing
Hydrogen (H ₂)	0.00005	0.500	
Nitrous oxide (N_2O)	0.000032	0.316	
Ozone (O ₃)	0.000002	0.020	

Data from Graedel and Crutzen, 1993.

^{*}Values represent concentrations in dry air at remote locations.

Greenhouse Gases

Compound	CO ₂ e Multiplier	2011 level	CO ₂ e
Carbon dioxide (CO ₂)	1	391 ppm	391 ppm
Methane (CH ₄)	25	1,813 ppb	45 ppm
Nitrous Oxide (N ₂ O)	298	324 ppb	97 ppm
Hydrofluorocarbons $(C_xH_aF_yO_z)$	124-14,800		
Perfluorocarbons (C _x F _y O _z)	7,390-12,200		
Sulfur Hexafluoride (SF ₆)	22,800		

Compare with tables 2.2 and 2.4 in M&Z

 CO_2 e = greenhouse gas equivalents in units of carbon dioxide

Stoichiometry

$$2H_2 + O_2 \Leftrightarrow 2H_2O$$

$$2H_2 + O_2 \leftrightarrow 2H_2O$$

$$2 \text{ moles } H_2 + 1 \text{ mole } O_2 \leftrightarrow 2 \text{ moles } H_2O$$

$$(2 \times 2 \times 1.008 \text{ g}) + (1 \times 2 \times 16.00 \text{ g}) = (2 \times 18.016 \text{ g})$$

Law of *definite proportions* or *constant composition*

Neutralization Example

A tractor trailer truck with a full load of hydrochloric acid (40,000 lbs) crashes into a bridge, spilling the acid into the stream. How much lime $[Ca(OH)_2]$ is required to neutralize the acid? The neutralization reaction is:

$$2HCI + Ca(OH)_2 = CaCl_2 + 2H_2O$$

Solution to Neutralization Ex.

Determine the number of moles of hydrochloric acid:

$$M_{HCl} = 40,000 \text{ lbs x } \frac{454 \text{ g}}{1 \text{ lb}} \text{ x } \frac{1 \text{ mole}}{36.5 \text{ g}} = 5.0 \text{ x } 10^5 \text{ moles HCl}$$

From the stoichiometric formula, one mole of lime neutralizes two moles of hydrochloric acid. The required amount of lime is then:

$$M_{Ca(OH)_2} = 5.0 \times 10^5 \text{ moles HCl x } \frac{1 \text{ mole Ca(OH)}_2}{2 \text{ moles HCl}} = 2.5 \times 10^5 \text{ moles Ca(OH)}_2$$

The mass of lime required is:

$$M_{Ca(OH)_2} = 2.5 \times 10^5 \text{ moles Ca(OH)}_2 \times \frac{74 \text{ g Ca(OH)}_2}{1 \text{ mole Ca(OH)}_2} = 1.8 \times 10^4 \text{ Kg}$$

$$M_{Ca(OH)_2} = 41,000 \text{ lb } Ca(OH)_2$$

Acetic Acid Example

Acetic acid [CH₃COOH] or vinegar is oxidized to carbon dioxide and water by microbial action. A vinegar manufacturing plant has 50 mg/L of acetic acid in its effluent wastewater. The plant flow is 500 m³ per day. How much oxygen is required each day to oxidize the vinegar?

First the equation must be balanced:

$$CH_3COOH + 2O_2 \leftrightarrow 2CO_2 + 2H_2O$$

Thus, two moles of oxygen are required to oxidize the acetic acid to carbon dioxide and water. The amount of acetic acid to oxidize each day is:

Solution to Acetic Acid Ex.

$$M_{HAc} = 50 \frac{\text{mg HAc}}{\text{L}} \times \frac{\text{g}}{1000 \text{ mg}} \times 500 \frac{\text{m}^3}{\text{day}} \times \frac{1000 \text{ L}}{1 \text{ m}^3} \times \frac{1 \text{ mol HAc}}{60 \text{ g HAc}}$$
 $M_{HAc} = 417 \frac{\text{mol}}{\text{d}}$

Since two moles of oxygen are required for each mole of acetic acid, the required oxygen is:

$$M_{O_2} = 417 \frac{\text{mol HAc}}{\text{day}} \times \frac{2 \text{ mol } O_2}{\text{mol HAc}} = 834 \frac{\text{mol } O_2}{\text{day}}$$

The mass of oxygen is then:

$$M_{O_2} = 834 \frac{\text{mol } O_2}{\text{day}} \times \frac{32 \text{ g } O_2}{\text{mol } O_2} = 26,700 \frac{\text{g } O_2}{\text{day}}$$
 $M_{O_2} = 26.7 \frac{\text{Kg } O_2}{\text{day}}$

Daygen Demand

- Theoretical oxygen demand (or ThOD) is the amount of oxygen required to convert the material to carbon dioxide and water. In cases where the organic matter contains amine compounds [-NH₂], the end product of the nitrogen is ammonia [NH₃].
- Biochemical Oxygen Demand (or BOD) is the amount of oxygen consumed by microorganisms in converting all biodegradable organic matter to carbon dioxide, water and ammonia
- Chemical Oxygen Demand (or COD) is the amount of strong oxidant (in oxygen equivalents) consumed in the course of converting aqueous substances to carbon dioxide, water and ammonia

ThOD Example

Ethanol or ethyl alcohol is used in beverages, as a gasoline additive, and other industrial applications. Small amounts of ethanol and also sugar, are used in the biological process to produce methanol. Both these compounds inevitably end up in the wastewaters coming from facilities which produce methanol. Calculate the theoretical oxygen demand for a wastewater containing:

- a) 25 mg/L ethanol [CH₃CH₂OH]
- b) 45 mg/L glucose $[C_6H_{12}O_6]$
- c) A mixture of 25 mg/L ethanol and 45 mg/L sucrose

David Reckhow CEE 370 L#4 36

Solution to ThOD Example

a) The first step is to balance the oxidation of ethanol (often written EtOH) to end products of carbon dioxide and water.

$$CH_3CH_2OH + \underbrace{3}_{GFW=46}O_2 \rightarrow \underbrace{2}_{GFW=96}CO_2 + \underbrace{3}_{H_2}O$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$GFW=96$$

ThOD =
$$25 \frac{\text{mg EtOH}}{\text{L}} \times \frac{96 \text{ mg O}_2}{46 \text{ mg EtOH}}$$

ThOD = $52 \text{ mg O}_2/L$

Solution (cont.)

b) As with the ethanol in part a) above, the first step is to write the balanced equation for the oxidation of glucose to end products of carbon dioxide and water.

$$C_6H_{12}O_6 + \underline{6}O_2 \rightarrow \underline{6}CO_2 + \underline{6}H_2O$$

GFW=180

GFW=192

ThOD =
$$45 \frac{\text{mg C}_6 \text{H}_{12} \text{O}_6}{\text{L}} \times \frac{192 \text{ mg O}_2}{180 \text{ mg C}_6 \text{H}_{12} \text{O}_6}$$

ThOD = $48 \text{ mg O}_2 / \text{L}$

Solution (cont.)

c) The ThOD of the mixture is simply the sum of the ThOD's of the individual components, or:

$$ThOD_{tot} = 52 \text{ mg } O_2/L + 48 \text{ mg } O_2/L$$

 $ThOD_{tot} = 100 \text{ mg } O_2/L$

Reactions & Stoichiometry

- Balancing chemical equations
 - Acid-Base
 - $Ca(HCO_3)_2 + NaOH = Ca(OH)_2 + NaHCO_3$
 - Oxidation of iron

$$O_2 + Fe^{+2} = Fe^{+3} + H_2O$$

Precipitation of alum

•
$$Al_2(SO_4)_3 + H_2O = Al(OH)_3$$

Quenching of chlorine with thiosulfate

$$\bullet HOCI + Na_2S_2O_3 = HCI + Na_2S_4O_6$$

Redox (oxidation-reduction) reactions

- Involve transfer of electrons between chemical species
 - Consider the reaction between A & B

$$A_{ox} + B_{red} \rightarrow A_{red} + B_{ox}$$

Now looking more closely at what happens

$$A_{ox} + e^- \rightarrow A_{red}$$
 Reduction half reaction $B_{red} \rightarrow B_{ox} + e^-$ Oxidation half reaction

Which also results in a change in oxidation state

Oxidation State

- Oxidation state is characterized by an oxidation number
 - the charge one would expect for an atom if it were to dissociate from the surrounding molecule or ion (assigning any shared electrons to the more electronegative atom).
 - may be either a positive or negative number, usually, an integer between -VII and +VII
- Rules for calculating oxidation state
 - The overall charge on a molecule or ion is equal to the sum of the oxidation states of each atom within
 - Some atoms are nearly always at the same oxidation state:
 - Hydrogen is almost always plus one (+I)
 - Oxygen is almost always negative two (-II)

Oxidation States

Stumm & Morgan, 1996; Table 8.1, pg. 427

Table 8.1. Oxidation State

Rules for Assigning Oxidation States:

- (1) The oxidation state of a monoatomic substance is equal to its electronic charge.
- (2) In a covalent compound, the oxidation state of each atom is the charge remaining on the atom when each shared pair of electrons is assigned completely to the more electronegative of the two atoms sharing them. An electron pair shared by two atoms of the same electronegativity is split between them.
- (3) The sum of oxidation states is equal to zero for molecules, and for ions is equal to the formal charge of the ions.

Examples:

Nitrogen Compounds		Sulf	r Compounds	Carbon Compounds		
Substance	Oxidation States	Substance	Oxidation States	Substance	Oxidation States	
NH ₄ ⁺ N ₂ NO ₂ ⁻ NO ₃ HCN SCN	N = -III, H = +I N = 0 N = +III, O = -II N = + V, O = -II N = -III, C = +II, H = +I S = -I, C = +III, N = -III	H_2S $S_8(s)$ SO_3^{2-} SO_4^{2-} $S_2O_3^{2-}$ $S_4O_6^{2-}$ $S_2O_6^{2-}$	S = -II, H = +I S = 0 S = +IV, O = -II S = +VI, O = -II S = +II, O = -II S = +2.5, O = -II S = +V, O = -II	HCO ₃ ⁻ HCOOH C ₆ H ₁₂ O ₆ CH ₃ OH CH ₄ C ₆ H ₅ COOH	C = +IV $C = +II$ $C = 0$ $C = -II$ $C = -IV$ $C = -2/7$	

- The first step in working with oxidation reactions is to identify the role of the reacting species.
 - At least one reactant must be the oxidizing agent (i.e., containing an atom or atoms that become reduced)
 - At least one must be a reducing agent (i.e., containing an atom or atoms that become oxidized).
- The second step is to balance the gain of electrons from the oxidizing agent with the loss of electrons from the reducing agent.
- Next, oxygen atoms are balanced by adding water molecules to one side or another and hydrogens are balanced with H⁺ ions.

$$Al_2(SO_4)_3 + xH_2O = yAl(OH)_3 + zSO_4 + mH^+$$

- What is the value of "y"?
 - A. 0.5
 - B. 1
 - **C.** 2
 - **D.** 3
 - E. None of the above

$$Al_2(SO_4)_3 + xH_2O = 2Al(OH)_3 + zSO_4 + mH^+$$

- What is the value of "z"?
 - A. 0.5
 - B. 1
 - **C.** 2
 - **D.** 3
 - E. None of the above

$$Al_2(SO_4)_3 + xH_2O = 2Al(OH)_3 + 3SO_4 + mH^+$$

- What is the value of "x"?
 - A. 0.5
 - B. 1
 - **C.** 2
 - **D.** 3
 - E. None of the above

$$Al_2(SO_4)_3 + 6H_2O = 2Al(OH)_3 + 3SO_4^{-2} + mH^+$$

- What is the value of "m"?
 - A. 1
 - **B.** 3
 - **C.** 6
 - D. 12
 - E. None of the above

$$Al_2(SO_4)_3 + 6H_2O = 2Al(OH)_3 + 3SO_4^{-2} + 6H^+$$

- Now make sure everything balances
 - Each element
 - Charges

Oxidation of Iron by Oxygen

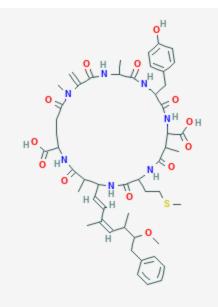
$$xO_2 + 1Fe^{+2} + mH^+ = yFe^{+3} + zH_2O$$

- What is the value of "x"?
 - A. 0.25
 - **B.** 0.5
 - **C.** 1
 - D. 2
 - E. Can't tell

Oxidation of Iron by Oxygen

$${}^{1}_{4}O_{2} + {}^{1}Fe^{+2} + {}^{1}H^{+} = {}^{1}Fe^{+3} + {}^{1}_{2}H_{2}O$$

- What is the value of "x"?
 - A. 0.25
 - **B.** 0.5
 - **C.** 1
 - D. 2
 - E. Can't tell



- In some amino acids
 - Methionine, Cysteine
- Microcystin YM
 - Produced by Microcystis

Low oxidation states are often toxic

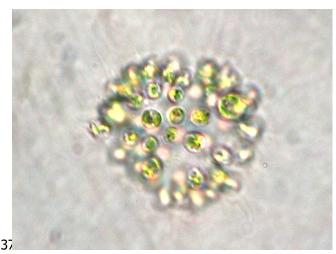
Hydrogen sulfide (H₂S)

Substance	Oxidation States				
H ₂ S	S = -II, $H = +I$				
$S_8(s)$	S = 0				
$SO_3^{2^{-}}$	S = +IV, O = -II				
SO ₄ ²⁻	S = +VI, O = -II				
$S_2O_3^{2-}$	S = +II, $O = -II$				
$S_4O_6^{2-}$	S = +2.5, O = -II				
$S_2O_6^{2-}$	S = +V, $O = -II$				

David Reckhow CEE 370 L#4 S₂O₆²⁻

Tom vs Miocrocystis

Tom Brady


No ability to produce toxins

Microcystis aeruginosa

Can make many types of cyanotixins

Tom	1	0				1
Microcystis	1	1				2

Balancing equations: Redox

 Oxidation of hydrogen sulfide by chlorine

To next lecture