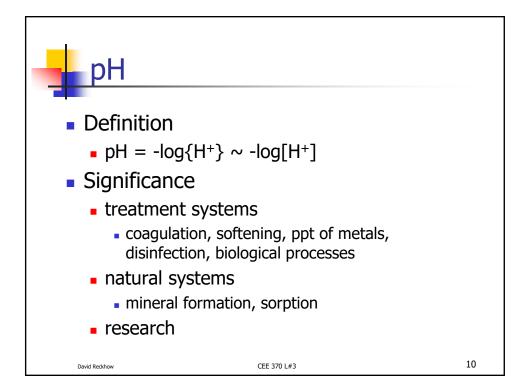
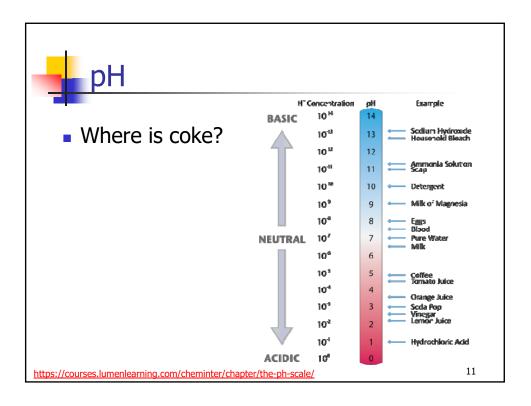
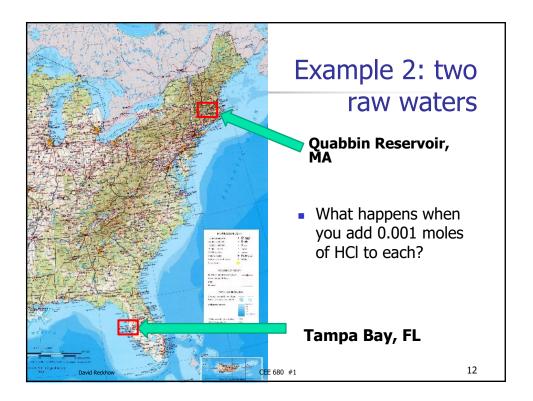
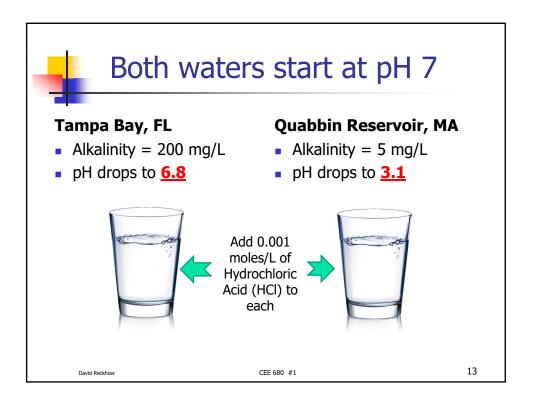
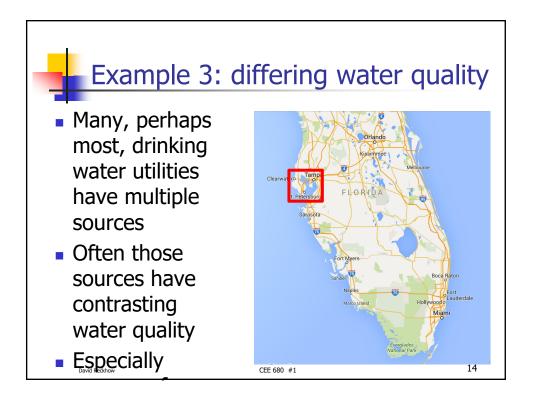

Lower as	toxicity increase	es
Mass/Volume Units	Mass/Mass Units	Typical Application
g/L (grams/liter)	(parts per thousand)	Stock solutions
mg/L (milligrams/liter)	ppm (parts per million)	Conventional pollutants
10-3g/L		(DO, nitrate, chloride)
μg/L (micrograms/liter)	ppb (parts per billion)	Trihalomethanes, Phenols
10 ⁻⁶ g/L		
ng/L (nanograms/liter)	ppt (parts per trillion)	PCBs, Dioxins
10 ⁻⁹ g/L		PFAS
pg/L (picograms/liter)		Pheromones
10^{-12} g/L		

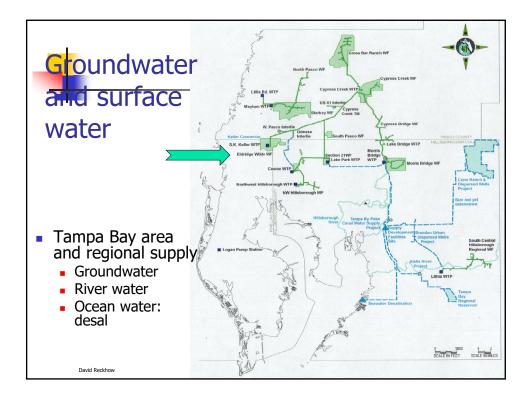


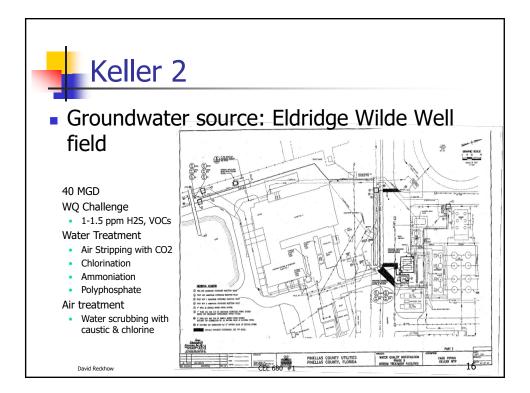


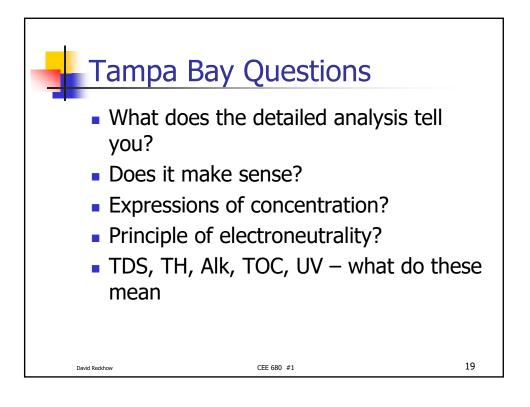

"Co	mplete" wa	ater ana	alysis	
	Species	mg/L	meq/L	
	Bicarbonate	153	2.5	
	Chloride	53	1.5	
	Sulfate	19.2	0.4	
	Calcium	44	2.2	
	Magnesium	10.9	0.9	
	Sodium	25.3	1.1	
	Potassium	7.8	0.2	
David Reckhow	CEE	370 L#3		7

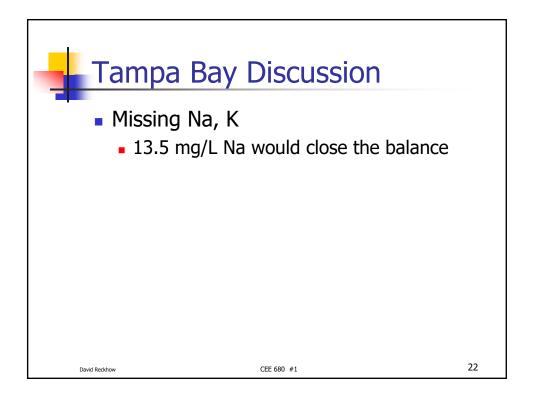

		Ρ	eri	od	ic 1	ſab	le	of t	he	Ele	em	en	s			
1 IA I Hydrogen 2 IIA				Atomic Number Name		rogen	Symbol				13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA 2 Hetherr 4.0026 7
Lithum Lithum AN Na Ma		imatter (color of n QUID SOLID UNKI	ame) Subo IOWN A	Electrons per shell category in the me lkali metalis lkaline earth met ransition metalis	t → etal-metalloid-no Lanthan als Actinide	nmetal trend (col ides s	Atomic Weight or of background) Metalloids Reactive nonm Noble gases		nown chemical p	roperties	5 Baron 10.81 2.3 13 Al	6 Carbon 12011 24 14 Si	7 N 14.007 2-5 15 P	8 0 0xygen 15.779 2-6 16 5	9 F 13.998 2-3 17 Cl	10 Ne 20,350 2-8 18 Ar
Sodium 22.9993992 Magnesium 25.00 19 20 K Calcium 29.9993 28-61	3 111B 21 Scandium 3.44-2	4 IVB 22 Titanium 47.843 34-16-2	5 VB 23 V Vanadium 30.9415 20.9415 20.9415	6 VIB 24 Chromium 51.9951 318-15-1	7 VIIB 25 Manganese 54/99844 24/05/	8 VIIIB 26 Fe	9 VIIIB 27 Co 58 933 34 65 7	10 VIIIB 28 Nicket 58.493 2-5-16-2	11 18 29 Cu 29 Copper 43545 23-18-1	12 11B 30 Zn 2538 24-18-3	Aluminium 25.982 2.8.3 31 Ga Ballium 69.722 2.8-6-3	Sificon 28.865 2 8 4 32 Germanium 72.530 3-8-864	Phosphorus 33,974 2,8,9 33 Ass Arsenic 74,922 3,8,855	Salfur 32.06 2.14 34 See Selenium 78.97 2.6784	Chlorine 35.45 2 # 7 35 Br 75.04 2.4-16-7	35346 211 36 Kryston 83796 24364
37 Rb Выбашин 5.6851 25 35 35 35 35 35 35 35 35 35 3	39 Yttrium 88.9584 2-3-30-1-2	40 Zr Zirconium 91224 2-8-18-2 72	41 Nb Nisbium 92,94837 2-8-18-12-1 73	42 Mo Molybdenum 95 95 2-8-18-12-1 74	43 Tc Technetium (96) 24-8-5-2 75	44 Ru Ruthenium 16607 2-8-18-5-1 76	45 Rh 102.41 2.6-18-5-1 77	46 Pd Pattadium 186.42 2.3-32-38 78	47 Ag Silver 107.87 2-8-18-1 79	48 Cd Cadmium 1241 2438-8-2 80	49 In Indium 14.82 2-8-38-3 81	50 Sn 188.77 2-4-38-38-4 82	51 Sb Antimony 12138 2-8-88-85 83	52 Te 122.80 2-4-18-18-4 8-4	53 I 105/ne 126.90 2-8-18-3 85	54 Xee 2439 2439343 86
Cs Ba U3 0054094 Barlum 13 0054094 15 307 87 R8 Fr Ra	57-71 Lanthanides 89-103 Actinides	Hf Hadnium 178.49 2-8-19-22-19-2 10-4 Rf	Ta Tantalum 180,43788 24542052 105 Db Dubnium	W Tungsten 183.84 24:19:22:02 106 Sg	Re Rhenium 184.21 2:4:95:22:02 107 Bh	0s ^{0smium} ¹⁰⁸ Hs	Ir ridium 102.22 2.8 H 32 H 52 109 Mt Metheorium	Pt Platinum 195.08 2-8-90-07-1 110 DS	Au Gold Inter 24552541 III Rg	Hg 200.59 24-56-32-8-2 112 Cn	Tl Thallium 24.58 24.592-053 113 Nh Nhonium	Pb 2072 28-8-22-84 114 Fl	Bi 2008.95 2-8-19-22-18-5 115 MC	Polonium (269) 2-8-35-32-86-6 116 LV	At Astatine (200) 24-8-32-36-7 117 TS	Rn (227) 2+8-52-8+6 118 Og
Francism (223) Radium (224) 24-8-02-98-11 22+8-02-98-12	57 La Lanthanum 1985 248/8842	Rutherfordium (247) 24-8-32-32-0-2 58 Ce Cerium 16:312 3-8-8-42	24-18-22-32-19-2 59 Prasecdymium 10-211 2-4-19-12-2	5436075000 2446325292 60 Nd Neodymium 14524 24562783	61 Promethium 14/8/2012/0-2 61 Promethium 14/8/2014/2	44854477 24483232432 62 Samarium 70235 24883432	63 63 63 Europium 15155 24:8:25:42	64 Gddstinium 15125 Gddstinium 15125 24%82542	65 Tb 14:52	Copernicium (285) 24:8-32-32:8-2 66 Dysprosium N2:50 24:8:258-2	67 Hotmun 44.92 Hotmun 44.92 24.8-22-8-3	Flerovium (289) 24:8-32:32:84 68 Erbium M7.26 2-4:83:34.2	69 Thubum 14-16-32-32-8-5 7 Thubum 14-5-72 2-5-18-38-22	2933 24-8-32-32-8-4 70 Yiterbium 773.65 2-8-8-28-2	71 24-8-32-32-96-7 71 Lutetium 76.57 2-8-832-42-	0ganesson (214) 24-18-32-32-18-8
	B9 Actinium (227) 2+36-22-36+2 Vavid Reckh	90 Th Thorism 232.04 2+10-22-10-10-2	91 Pa Protactinium 2104 2+8-32-32+2	92 U Uranium 228.03 24-18-32-25-92	93 Np Neptunium (237) 24-11-22-22-92	94 Pu Plutenium (244) 24-8-22-26-82	95 Americium (243) 24-9-32-25-4-2	96 Cm Curium (247) 249-32/25+2 EE 3/U L	97 Bk Berkelium (247) 2+10-22-27+2	98 Cf Catifornium (259) 2482-22-28+2	99 Es Einsteinium (252) 24-10-22-29-62	100 Fm Fermium (257) 2418-32-324-2	101 Mendelevium (258) 2418-32-22-8-2	102 No Nobelium (259) 2+18-22-82+2	103 Lr Lawrencium (264) 2.4-18-22-22-4-3	0

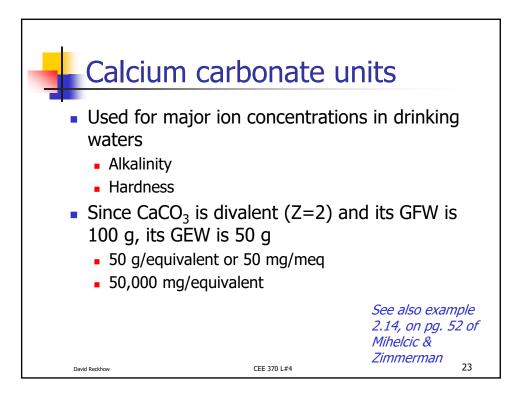


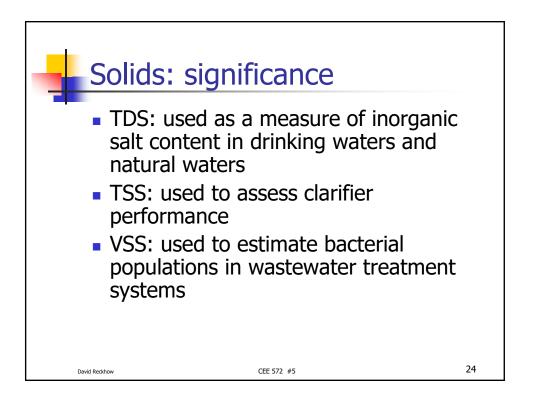


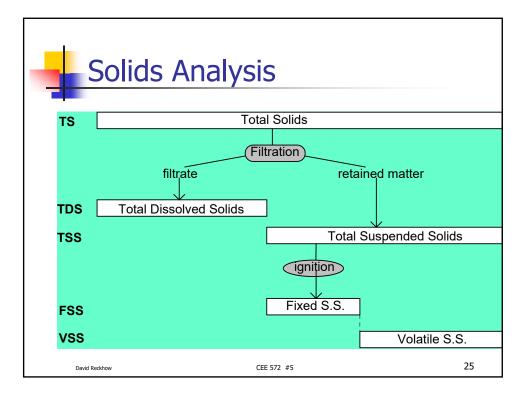


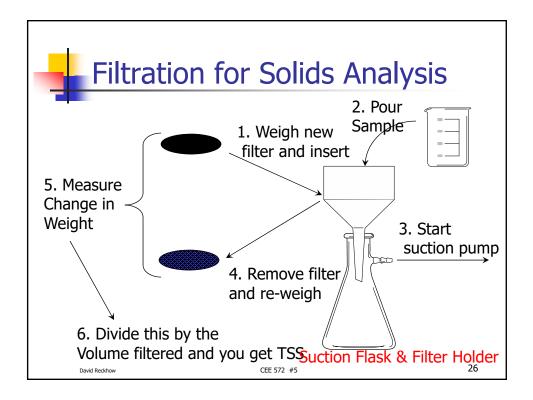



			stly inor le Station:			0
Parameter	Value	Units	Parameter	Value	Units	
Calcium	77.7	mg/L	Sulfate	4	mg/L	
Iron	0.018	mg/L	Phosphorus, Total (as P)	0.23	mg/L	
Magnesium	5.08	mg/L	Alkalinity as CaCO3	209	mg/L	
Arsenic	0.0002	mg/L	Total Hardness	215	mg/L	
Copper	0.0013	mg/L	Total Dissolved Solids	316	mg/L	
Lead	0.0001	mg/L	Ammonia as N	0.84	mg/L	
Bromide	0.05	mg/L	Free Ammonia as N	0.16	mg/L	
Chloride	22	mg/L	Total Organic Carbon	3.7	mg/L	
Nitrate as N	0.04	mg/L	UV 254	0.117	cm - 1	
Nitrite as N	0.02	mg/L	Heterotrophic Plate Count	3	CFU/ml	
Orthophosphate as P	0.12	mg/L	E. coli	1	MPN/100ml	
Orthophosphate as PO4	0.37	mg/L	Total Coliforms	1	MPN/100ml	
David Reckhow			CEE 680 #1			17


_			<mark>cs above</mark> e Station: Au		
Parameter	Value	Units	Parameter	Value	Units
Bromodichloromethane	8.3	ug/L	Dibromoacetonitrile	0.77	ug/L
Chloroform	45	ug/L	Dichloroacetonitrile	10.7	ug/L
Dibromochloromethane	0.9	ug/L	Total Haloacetonitriles	13.3	ug/L
Total Trihalomethanes	54.2	ug/L	Trichloroacetonitrile	0.12	ug/L
1,1,1-Trichloro-2-propanone	3.47	ug/L	Chloral hydrate	5.45	ug/L
1,1-Dichloro-2-propanone	1.36	ug/L	Dichloroacetic acid	12.6	ug/L
Bromochloroacetonitrile	1.73	ug/L	Total Haloacetic Acids (HAA5)	31.8	ug/L
Chloropicrin	0.21	ug/L	Trichloroacetic acid	19	ug/L
David Reckhow			CEE 680 #1		18




Tampa B	ay water	analysis	5
	Substance	Conc. units	
	Calcium	77.7mg/L	
	Iron	0.018mg/L	
	Magnesium	5.08mg/L	
	Arsenic	0.0002mg/L	
	Copper	0.0013mg/L	
	Lead	0.0001mg/L	
	Bromide	0.05mg/L	
	Chloride	22mg/L	
The major	Nitrate as N	0.04mg/L	
-	Nitrite as N	0.02mg/L	
constituents	Orthophosphate as P	0.12mg/L	
	Orthophosphate as PO4, calculated	0.37 ^{mg/L}	
and some	Sulfate	4mg/L	
microbials	Phosphorus, Total (as P)	0.23mg/L	
micropiais	Alkalinity as CaCO3	209mg/L	
	Total Hardness	215mg/L	
	Total Dissolved Solids	316mg/L	
	Ammonia as N	0.84mg/L	
	Free Ammonia as N	0.16mg/L	
	Total Organic Carbon	3.7mg/L	
	UV 254	0.117cm - 1	
	Heterotrophic Plate Count	3CFU/ml	
	E. coli	1MPN/100ml	
	Total Coliforms	1MPN/100ml	
David Reckhow	CEE 370 L#4		20


Tampa		N / (<u>`</u>	دات	tior		
	a Do	IVC	Jai	ula	UUI	15	
	Conc.						
Substance	(mg/L)	GFW	mΜ	charge/M	meq/L	pos	neg
Calcium	77.7						
Iron	0.018	55.845	0.0003	3	0.00097	0.00097	,
Magnesium	5.08	3 24.305	0.2090	2	0.41802	0.41802	
Arsenic	0.0002	74.922	0.0000	-1	0.00000		0.00000
Copper	0.0013	63.546	0.0000	2	0.00004	0.00004	
Lead	0.0001	207.2	0.0000	2	0.00000	0.00000	
Bromide	0.05	79.904	0.0006	-1	-0.00063		-0.00063
Chloride	22	35.453	0.6205	-1	-0.62054		-0.62054
Nitrate as N	0.04	14.007	0.0029	-1	-0.00286		-0.00286
Nitrite as N	0.02	14.007	0.0014	-1	-0.00143		-0.00143
Orthophosphate as P	0.12	30.974	0.0039	-3	-0.01162		-0.01162
Orthophosphate as PO4,							
calculated	0.37			-			
Sulfate	4			_	-0.08328		-0.08328
Phosphorus, Total (as P)	0.23				0.00000		
Alkalinity as CaCO3	209						-4.17691
Total Hardness	215		2.1484	2	4.29682	•	
Total Dissolved Solids	316						
Ammonia as N	0.84						
Free Ammonia as N	0.16			1			
Total Organic Carbon	3.7		0.3081		0.00000		
Total =	854.33				sum	4.30789	-4.89726
	323.33	Bexclude TD	S, TH		diff		-0.58937
					%		12.0%

