





















| Rank | Chemical                     | Use                                                                    | Chemical<br>Formula                           |
|------|------------------------------|------------------------------------------------------------------------|-----------------------------------------------|
| 1    | Dichloromethane              | Paint stripping, solvent degreaser, blowing agent in foams             | CH <sub>2</sub> Cl <sub>2</sub>               |
| 2    | Trichloroethene              | Dry cleaning agent, metal degreaser solvent                            | C <sub>2</sub> Cl <sub>3</sub> H              |
| 3    | Tetrachloroethene            | Dry cleaning, metal degreaser, solvent, paint remover                  | C <sub>2</sub> Cl <sub>4</sub>                |
| 4    | trans 1,2-<br>Dichloroethene | Solvent, additive to lacquer, low-<br>temperature solvent for caffeine | $C_2H_2Cl_2$                                  |
| 5    | Chloroform                   | Solvent, electronic circuit manufacturing                              | CHCl <sub>3</sub>                             |
| 6    | l,1-Dichloroethane           | Paint and varnish remover, metal degreaser, ore flotation              | C <sub>2</sub> C1 <sub>2</sub> H <sub>4</sub> |
| 7    | 1,1-Dichloroethene           | Paint and varnish remover, metal de-<br>greaser                        | C <sub>2</sub> C1 <sub>2</sub> H <sub>2</sub> |
| 8    | 1,1,1-Trichloroethane        | Solvent                                                                | C <sub>2</sub> Cl <sub>3</sub> H <sub>3</sub> |
| 9    | Toluene                      | Gasoline component, solvent thinner, adhesive solvent                  | C <sub>7</sub> H <sub>8</sub>                 |
| 10   | 1,2-Dichloroethane           | Paint and varnish remover, metal degreaser, fumigant                   | C <sub>2</sub> C <sub>12</sub> H <sub>4</sub> |

| benzene              | Component of gasoline, used in chemical<br>synthesis<br>Used in styrene manufacturing, solvent,<br>asphalt construction | C <sub>6</sub> H <sub>6</sub><br>C <sub>8</sub> H <sub>10</sub>                                          |
|----------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| benzene              | Used in styrene manufacturing, solvent,<br>asphalt construction                                                         | C <sub>8</sub> H <sub>10</sub>                                                                           |
| ol                   | <b>D 1 1 1 1 1 1</b>                                                                                                    |                                                                                                          |
| 1                    | Disinfectant, pharmaceutical aid                                                                                        | C <sub>6</sub> H <sub>5</sub> OH                                                                         |
| obenzene             | Used in chemical synthesis                                                                                              | C <sub>6</sub> H <sub>5</sub> Cl                                                                         |
| chloride             | Refrigerant, used in plastics industry                                                                                  | C <sub>2</sub> ClH <sub>3</sub>                                                                          |
| on tetrachloride     | Dry cleaning, metal degreasing, veterinary medicine                                                                     | CCl <sub>4</sub>                                                                                         |
| -<br>hexyl)phthalate | Used in vacuum pumps                                                                                                    | C <sub>24</sub> H <sub>38</sub> O <sub>4</sub>                                                           |
| thalene              | Used in manufacturing mothballs and motor fuel, component of coal tar                                                   | C <sub>10</sub> H <sub>8</sub>                                                                           |
| -Trichloroethane     | Solvent                                                                                                                 | C <sub>2</sub> Cl <sub>3</sub> H <sub>3</sub>                                                            |
| oethane              | Refrigerant, solvent, used to produce tetraethyl lead                                                                   | C <sub>2</sub> ClH <sub>5</sub>                                                                          |
| . T                  | richloroethane<br>ethane                                                                                                | Trichloroethane       Solvent         ethane       Refrigerant, solvent, used to produce tetraethyl lead |

| How caphysica                                                                                                                  | ledge of<br>rties?                                            |                                                                                                     |                                                                        |                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 1-2. Propertie                                                                                                           | es of Selecte                                                 | ed Chlorinated A                                                                                    | liphatic Hyd                                                           | drocarbons*                                                                                                                                                                                                     |
|                                                                                                                                |                                                               |                                                                                                     |                                                                        |                                                                                                                                                                                                                 |
| Chemical                                                                                                                       | Vapor<br>Pressure<br>(mmHg)                                   | Henry's<br>Constant<br>(atm-m <sup>3</sup> /mole)                                                   | Water<br>Solubility<br>(mg/L)                                          | Chemical<br>Half-life<br>(Years)                                                                                                                                                                                |
| Chemical<br>Carbon tetrachloride                                                                                               | Vapor<br>Pressure<br>(mmHg)<br>90                             | Henry's<br>Constant<br>(atm-m <sup>3</sup> /mole)<br>0.0294                                         | Water<br>Solubility<br>(mg/L)<br>785                                   | Chemical<br>Half-life<br>(Years)<br>16–41                                                                                                                                                                       |
| Chemical<br>Carbon tetrachloride<br>Chloroform                                                                                 | Vapor<br>Pressure<br>(mmHg)<br>90<br>160                      | Henry's<br>Constant<br>(atm-m <sup>3</sup> /mole)<br>0.0294<br>0.0040                               | Water<br>Solubility<br>(mg/L)<br>785<br>8,200                          | Chemical<br>Half-life<br>(Years)<br>16-41<br>742-3,000                                                                                                                                                          |
| Chemical<br>Carbon tetrachloride<br>Chloroform<br>Tetrachloroethene                                                            | Vapor<br>Pressure<br>(mmHg)<br>90<br>160<br>14                | Henry's<br>Constant<br>(atm-m <sup>3</sup> /mole)<br>0.0294<br>0.0040<br>0.0268<br>0.0117           | Water<br>Solubility<br>(mg/L)<br>785<br>8,200<br>150                   | $\begin{array}{c} \text{Chemical} \\ \text{Half-life} \\ (\text{Years}) \end{array} \\ \hline 16-41 \\ 742-3,000 \\ 3.8 \times 10^8 - 9.9 \times 10^8 \\ 4.0 \times 10^5 + 1.2 \times 10^6 \end{array}$         |
| Chemical<br>Carbon tetrachloride<br>Chloroform<br>Tetrachloroethene<br>Trichloroethene<br>Vinyl chloride                       | Vapor<br>Pressure<br>(mmHg)<br>90<br>160<br>14<br>60<br>2,660 | Henry's<br>Constant<br>(atm-m <sup>3</sup> /mole)<br>0.0294<br>0.0040<br>0.0268<br>0.0117<br>0.0224 | Water<br>Solubility<br>(mg/L)<br>785<br>8,200<br>150<br>1,100<br>2,700 | $\begin{array}{c} \mbox{Chemical} \\ \mbox{Half-life} \\ \mbox{(Years)} \end{array} \\ \hline 16-41 \\ 742-3,000 \\ 3.8 \times 10^8 - 9.9 \times 10^8 \\ 4.9 \times 10^5 - 1.3 \times 10^6 \\ > 10 \end{array}$ |
| Chemical<br>Carbon tetrachloride<br>Chloroform<br>Tetrachloroethene<br>Trichloroethene<br>Vinyl chloride<br>From Barbee, 1994. | Vapor<br>Pressure<br>(mmHg)<br>90<br>160<br>14<br>60<br>2,660 | Henry's<br>Constant<br>(atm-m <sup>3</sup> /mole)<br>0.0294<br>0.0040<br>0.0268<br>0.0117<br>0.0224 | Water<br>Solubility<br>(mg/L)<br>785<br>8,200<br>150<br>1,100<br>2,700 | $\begin{array}{c} \text{Chemical} \\ \text{Half-life} \\ (\text{Years}) \end{array} \\ \hline 16-41 \\ 742-3,000 \\ 3.8 \times 10^8 - 9.9 \times 10^8 \\ 4.9 \times 10^5 - 1.3 \times 10^6 \\ > 10 \end{array}$ |

|               |                           | F                                                         | r                                       |
|---------------|---------------------------|-----------------------------------------------------------|-----------------------------------------|
|               | Field                     | Journal                                                   | Publisher                               |
|               | Environmental quality     | Environmental Science<br>and Technology                   | American Chemical Society               |
|               | -                         | Water Resources<br>Research                               | American Geophysical Union              |
| Ŭ             |                           | Water, Air and Soil<br>Pollution                          | Kluwer Academic<br>Publications         |
| n             | Water treatment           | Journal of the American<br>Water Works Association        | American Water Works<br>Association     |
| 0             |                           | Aqua                                                      | International Water Assn.               |
| Ň             |                           | Journal of the<br>Environmental<br>Enaineering Division   | American Society of Civil<br>Engineers  |
| U<br>U        | Wastewater treatment      | Water Environment<br>Research                             | Water Environment<br>Federation         |
| atic          |                           | Journal of the<br>Environmental<br>Engineering Division   | American Society of Civil<br>Engineers  |
|               | Solid waste               | BioCycle                                                  | J. G. Press, Inc.                       |
| 4             | Hazardous waste           | Hazardous Waste and<br>Hazardous Materials                | Mary Ann Liebert, Inc.                  |
| ō             |                           | Ground Water                                              | Ground Water Publications,<br>Inc.      |
| IJ            | Air pollution and control | Journal of the Air and<br>Waste Management<br>Association | Air and Waste Management<br>Association |
|               | General                   | Chemical and<br>Engineering News                          | American Chemical Society               |
| David Reckhow |                           | Civil Engineering                                         | American Society of Civil<br>Engineers  |



| Telephone Number<br>(513)569-7562 | Address<br>ORD Publications<br>P.O. Box 19962<br>Cincinnati, OH 45219-0962                                                                                             |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (513)569-7562                     | ORD Publications<br>P.O. Box 19962<br>Cincinnati, OH 45219-0962                                                                                                        |
|                                   |                                                                                                                                                                        |
| (202) 783-3238                    | Superintendent of Documents<br>Government Printing Office<br>Washington, DC 20402                                                                                      |
| (800) 424-9346                    | RCRA Docket Information<br>Center (RIC)<br>Office of Solid Waste (OS-<br>305)<br>U.S. Environmental Protection<br>Agency<br>401 M Street, S.W.<br>Washington, DC 20460 |
| (703) 487-4650                    | National Technical Information<br>Service<br>U.S. Department of<br>Commerce<br>Springfield, VA 22161<br>Washington, DC                                                 |
|                                   | (800) 424-9346<br>(703) 487-4650<br>CEE 370 L#1                                                                                                                        |









| _                                                                         | Andrew W                                                                       | heeler                  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|
| Administrator<br>Deputy Administrator                                     |                                                                                |                         |
| Assistant Administrator<br>for Administration and<br>Resources Management | Assistant Administrator<br>for Enforcement and<br>Compliance Assurance         |                         |
| Office of the Chief<br>Financial Officer<br>Counsel                       | Office of Inspector<br>General                                                 |                         |
| Assistant Administrator<br>for International<br>Activities Activity       | Assistant Administrator<br>for Prevention, Pesticides,<br>and Toxic Substances | Created by<br>Nixon Adm |
| Assistant Administrator<br>for Research and<br>Development Development    | Assistant Administrator<br>for Water                                           |                         |
| Region 1<br>Boston Region 2<br>New York Philadelphia                      | Region 4<br>Atlanta Chicago                                                    |                         |
| Region 6<br>Dallas Kansas City Denver                                     | Region 9<br>San Francisco Seattle                                              |                         |















| Cor         | ntrolling Air Pol                         | lution in Cities                                                                                                                                                                                                                    |  |  |
|-------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|             |                                           |                                                                                                                                                                                                                                     |  |  |
| Source      | Pollutants                                | Methods of Control                                                                                                                                                                                                                  |  |  |
| Industries  | Volatile organics                         | Require reduced emissions                                                                                                                                                                                                           |  |  |
|             | Volatile chlorofluorocarbons              | Require reduced emissions                                                                                                                                                                                                           |  |  |
|             | Particulate inorganics                    | Require reduced emissions                                                                                                                                                                                                           |  |  |
| Automobiles | Hydrocarbons                              | Improved discharge nozzles at filling<br>stations, improved ventilation within the<br>gasoline tank                                                                                                                                 |  |  |
|             | Products of incomplete combustion         | Improved combustion by requiring<br>improved combustion efficiency (auto<br>manufacturer), regular engine<br>maintenance by requiring vehicle<br>emission testing, requiring gasoline<br>stations to provide only oxygenated fuels. |  |  |
|             | Chlorofluorocarbons from air conditioners | Require the redesign of the air conditione<br>so that future automobiles can use other<br>refrinerants                                                                                                                              |  |  |









| All increase chance of deat                              | h in any year by 0.000001             |  |  |  |  |  |  |  |
|----------------------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|
| Smoking 1.4 cigarettes                                   | Cancer, heart disease                 |  |  |  |  |  |  |  |
| Spending 1 hr. in a coal mine                            | Black lung disease                    |  |  |  |  |  |  |  |
| Living 2 days in NYC or<br>Boston                        | Air pollution                         |  |  |  |  |  |  |  |
| Living 2 months in Denver                                | Cancer caused by cosmic radiation     |  |  |  |  |  |  |  |
| One chest X-ray                                          | Cancer caused by radiation            |  |  |  |  |  |  |  |
| Eating 40 tbs. of peanut butter                          | Liver cancer caused by<br>Aflatoxin B |  |  |  |  |  |  |  |
| Drinking 30 12-oz. cans of diet soda                     | Cancer caused by saccharin            |  |  |  |  |  |  |  |
| Living 150 yrs. within 20 miles of a nuclear power plant | Cancer caused by radiation            |  |  |  |  |  |  |  |







| 1 | 1<br>H<br>Hydrogen<br>1 x 10 <sup>-1</sup>                     | 2                                                      |                           |                                                                   |                                                                         | ELI                                                              | EMEN                                             | ITS C                 | )F TH                                                          | 1E HU                                                | JMAI                                         | N BO                                                  | <b>DY</b>                                  | 14                                                           | 15                                                     | 16                                                      | 17                                             | 2<br>He<br>Helum         |
|---|----------------------------------------------------------------|--------------------------------------------------------|---------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|-----------------------|----------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|--------------------------|
| 2 | 3<br>Lithium<br>3.1 x 10 <sup>-8</sup>                         | 4<br>Be<br>Berylliam                                   |                           | Mass Fraction = 10 <sup>Color</sup>                               |                                                                         |                                                                  |                                                  |                       |                                                                |                                                      | 5<br>Boron<br>6.90 x 10 <sup>-7</sup>        | 6<br>C<br>Carbon<br>1.8 x 10 <sup>-1</sup>            | 7<br>N<br>Nitrogen<br>3 x 10 <sup>-2</sup> | 8<br>0<br>0xygen<br>6.5 x 10 <sup>-1</sup>                   | 9<br><b>F</b><br>Fluorine<br>3.2 x 10 <sup>-5</sup>    | 10<br>Ne<br>Neon                                        |                                                |                          |
| 3 | 11<br>Na<br>Sodium<br>1.5 x 10 <sup>-3</sup>                   | 12<br>Mg<br>Magnesium<br>5.00 x 10 <sup>-4</sup>       | 3                         | 4                                                                 | 5                                                                       | 6                                                                | 7                                                | 8                     | 9                                                              | 10                                                   | 11                                           | 12                                                    | 13<br>Aluminum<br>8.70 x 10 <sup>-7</sup>  | 14<br>Silicon<br>2 x 10 <sup>-5</sup>                        | 15<br>P<br>Phosphorus<br>1.1 x 10 <sup>-2</sup>        | 16<br><b>S</b><br>Sulfur<br>2.5 x 10 <sup>-3</sup>      | 17<br>Cl<br>Chiorine<br>1.5 x 10 <sup>-3</sup> | 18<br>Ar<br>Argon        |
| 4 | 19<br><b>K</b><br>Potassium<br>2 x 10 <sup>-3</sup>            | 20<br>Ca<br>Calcium<br>1.4 x 10 <sup>-2</sup>          | 21<br>Sc<br>Scandium      | 22<br><b>Ti</b><br><sup>Titanium</sup><br>1.30 x 10 <sup>-7</sup> | 23<br>V<br>Vanadium<br>2.60 x 10 <sup>-7</sup>                          | 24<br><b>Cr</b><br><sup>Chromium</sup><br>2.4 x 10 <sup>-8</sup> | 25<br>Mn<br>Manganese<br>1.70 x 10 <sup>-7</sup> | 26<br>Fe              | 27<br><b>Co</b><br><sup>Cobalt</sup><br>2.1 x 10 <sup>-8</sup> | 28<br><b>Ni</b><br>Nickel<br>1.40 x 10 <sup>-7</sup> | 29<br>Cu<br>Copper<br>1 x 10 <sup>-6</sup>   | 30<br>Zn<br><sup>Zinc</sup><br>3.2 x 10 <sup>-5</sup> | 31<br>Ga<br>Gallium                        | 32<br>Germanium                                              | 33<br><b>As</b><br>Arsenic<br>2.60 x 10 <sup>-7</sup>  | 34<br>Seenium<br>1.90 x 10 <sup>-7</sup>                | 35<br>Br<br>Bromine<br>2.9 x 10 <sup>-6</sup>  | 36<br>Kr<br>Krypton      |
| 5 | 37<br><b>Rb</b><br>Rubidium<br>4.6 x 10 <sup>-6</sup>          | 38<br><b>Sr</b><br>Strontium<br>4.6 x 10 <sup>-6</sup> | 39<br>Y<br>Yttrium        | 40<br><b>Zr</b><br><sup>Zirconium</sup><br>6 x 10 <sup>-6</sup>   | 41<br><b>Nb</b><br>Nicbium<br>1.6 x 10 <sup>-6</sup>                    | 42<br><b>Mo</b><br>Nolybdenum<br>1.30 x 10 <sup>-7</sup>         | 43<br>Tc<br>Technetium                           | 44<br>Ru<br>Ruthenium | 45<br>Rh<br>Rhodium                                            | 46<br>Pd<br>Palladium                                | 47<br>Ag<br>Silver<br>1.0 x 10 <sup>-8</sup> | 48<br>Cd<br>Cadmium<br>7.20 x 10 <sup>-1</sup>        | 49<br>In<br>Indium                         | 50<br><b>Sn</b><br><sup>Tin</sup><br>2.40 x 10 <sup>-7</sup> | 51<br><b>Sb</b><br>Antimony<br>1.10 x 10 <sup>-7</sup> | 52<br><b>Te</b><br>Tellurium<br>1.20 x 10 <sup>-7</sup> | 53<br>Icdine<br>1.60 x 10 <sup>-7</sup>        | 54<br>Xe<br>Xenon        |
| 6 | 55<br><b>CS</b><br><sup>Cesium</sup><br>2.1 x 10 <sup>-8</sup> | 56<br>Ba<br>Barium<br>3.10 x 10 <sup>-7</sup>          | 57-71                     | 72<br>Hf<br>Hafnlum                                               | 73<br>Ta<br>Tantalum                                                    | 74<br>W<br>Tungsten                                              | 75<br>Re<br>Rhenium                              | 76<br>Os<br>Osmium    | 77<br>Iridium                                                  | 78<br>Pt<br>Platinum                                 | 79<br>Au<br>Gold<br>3 x 10 <sup>-9</sup>     | 80<br>Hg<br>Mercury<br>1.90 x 10 <sup>-1</sup>        | 81<br>TI<br>Thellum                        | 82<br>Pb<br>Lead<br>1.7 x 10 <sup>-6</sup>                   | 83<br>Bismuth                                          | 84<br>Po<br>Polonium                                    | 85<br>At<br>Astatine                           | 86<br><b>Rn</b><br>Redon |
| 7 | 87<br>Fr<br>Francium                                           | 88<br>Ra<br>Radium                                     | 89-103                    | 104<br><b>Rf</b><br>Rutherfordium                                 | 105<br>Db<br>Dubrium                                                    | 106<br>Sg<br>Seeborgium                                          | 107<br>Bh<br>Bohrium                             | 108<br>Hs<br>Hassium  | 109<br>Mt<br>Meitnerium                                        | 110<br>Ds<br>Dermstadtium                            | 111<br>Rg<br>Roentgenium                     | 112<br>Copernicium                                    | n Nihonium                                 | 114<br>Fl<br>Flerovium                                       | 115<br>Mc<br>Noscovium                                 | 116<br>Lv<br>Livermorium                                | 117<br>TS<br>Tennessine                        | 118<br>Og<br>Oganesson   |
|   |                                                                |                                                        | 57<br>L<br>Lantf<br>1.37: | a Cer<br>k 10 <sup>-6</sup> 5.70                                  | <b>e</b><br>1<br>1<br>10 <sup>-7</sup><br>Praseco<br>× 10 <sup>-7</sup> | f <b>r N</b><br>dymium Neod                                      | d<br>ymium Prome                                 | m<br>sthium Sama      | nium 63<br>Euro                                                | ju Gadol                                             | d Ter                                        | rbium 66<br>Dys                                       | )y<br>prosium Hol                          | 68<br>Mium Er                                                | ir<br>Num Th                                           | alium 70<br>Ytte                                        | rbium 71<br>Lute                               | .U<br>etium              |
|   |                                                                |                                                        | 89<br>Acti                | IC T                                                              | h P<br>Protax                                                           | a 92<br>Ura                                                      | J 93<br>Nepti                                    | Piuto                 | u Arre                                                         | m Ci                                                 | ium 97<br>Ber                                | Sk (                                                  | Cf E<br>Ifornium                           | inium Fer                                                    | mium Hend                                              | Id Nob                                                  | elium                                          | .ľ<br>encium             |







| SI U          | nit pre          | fixes (l    | arge)  |    |
|---------------|------------------|-------------|--------|----|
| -             | Factor           | Prefix      | Symbol |    |
|               | 10 <sup>1</sup>  | deka        | da     |    |
|               | 10 <sup>2</sup>  | hecto       | d      |    |
|               | 10 <sup>3</sup>  | kilo        | k      |    |
|               | 10 <sup>6</sup>  | mega        | М      |    |
|               | 10 <sup>9</sup>  | giga        | G      |    |
|               | 1012             | tera        | Т      |    |
|               | 10 <sup>15</sup> | peta        | Р      |    |
|               | 1018             | еха         | E      |    |
| David Reckhow |                  | CEE 370 L#3 |        | 43 |

| SI U          | Jnit pro         | efixes (    | (small) | _    |
|---------------|------------------|-------------|---------|------|
|               | Factor           | Prefix      | Symbol  |      |
|               | 10-1             | deci        | d       |      |
|               | 10-2             | centi       | С       |      |
|               | 10-3             | milli m     |         |      |
|               | 10 <sup>-6</sup> | micro       | μ       |      |
|               | 10-9             | nano        | n       |      |
|               | 10-12            | pico        | р       |      |
|               | 10-15            | femto       | f       |      |
|               | 10-18            | atto        | а       |      |
| David Reckhow |                  | CEE 370 L#3 |         | - 44 |

|                                                      | 1 6                                             |                      | 100 at 100     |            |       |               |      |
|------------------------------------------------------|-------------------------------------------------|----------------------|----------------|------------|-------|---------------|------|
| what Tom is Ma                                       | de of wor                                       | ald fill a cu        | ibe            |            |       |               |      |
|                                                      | Element                                         | of length            | mass           |            |       |               |      |
|                                                      | - oxygen                                        | 33.5 cm              | 43 kg          |            |       |               |      |
| Oxygen-                                              | carbon                                          | 19.2 cm              | 16 kg          |            |       |               |      |
| found                                                | hydrogen                                        | 46.2 cm              | 7 kg           |            |       |               |      |
| mostly                                               | calcium                                         | 8.64 cm              | 1.0 kg         |            |       |               |      |
| component                                            | phosphorus                                      | 7.54 cm              | 780 g          | lom        | VC    | Mucro         |      |
| of water,                                            | potassium                                       | 5.46 cm              | 140 g          |            | V D   | PICO          |      |
| which makes                                          | sodium                                          | 4.07 cm              | 140 g          |            |       |               | /    |
| weight                                               | chlorine                                        | 3.98 cm              | 95 g           |            |       |               |      |
|                                                      | magnesium                                       | 2.22 cm              | 19 g           |            |       |               |      |
|                                                      | iron<br>fluorine                                | 8.1 mm               | 4.2 g          |            |       |               |      |
|                                                      | zinc                                            | 6.9 mm               | 2.3 g          |            | Flome | nt mM/I M/M-I | 2    |
|                                                      | a                                               | 7.5 mm               | 1.0 g          |            | Lieme |               |      |
| most abundant                                        | rubidium                                        | 7.6 mm               | 0.68 g         |            | C     | 11000         | 14/  |
| element in the body                                  | strontum                                        | 4.0 mm               | 0.32 g         |            | N     | 1400          | 16   |
| biological role                                      | - lead                                          | 2.2 mm               | 0.12 g         |            | P     | 120           | 1    |
|                                                      | copper                                          | 2.0 mm               | 72 mg          |            | 1     | 120           | 1 2  |
|                                                      | <ul> <li>aluminum</li> <li>cadmium</li> </ul>   | 2.8 mm               | 60 mg          |            | 5     | 170           | 1.3  |
|                                                      | - cerium                                        | 1.7 mm               | 40 mg          |            | K     | 250           | 1.7  |
|                                                      | barium                                          | 1.8 mm               | 22 mg          |            | Ma    | 100           | 0.56 |
|                                                      | a iodine                                        | 1.6 mm               | 20 mg          |            | Ca.   | 3100          | 23   |
|                                                      | titanium                                        | 1.6 mm               | 20 mg          |            | cu    | 5100          | 2.5  |
|                                                      | o —— boron                                      | 2.0 mm               | 18 mg          |            | Sr    | / 0           | .054 |
|                                                      | <ul> <li>—— nickel</li> <li>selenium</li> </ul> | 1.2 mm               | 15 mg          |            | Fe    | 0.7 0.0       | 0075 |
|                                                      | <ul> <li> chromium</li> </ul>                   | 1.3 mm               | 14 mg          |            | Mn    | 0.42 0.0      | 0038 |
|                                                      | manganese                                       | 1.2 mm               | 12 mg          |            | Zn    | 0.08 0.0      | 000  |
|                                                      | <ul> <li>arsenic</li> <li>lithium</li> </ul>    | 1.1 mm               | 7 mg           |            | 211   | 0.08 0.0      | 0000 |
|                                                      | <ul> <li>cesium</li> </ul>                      | 1.5 mm               | 6 mg           |            | Cu    | 0.035 0.00    | 0038 |
|                                                      | · mercury                                       | 0.8 mm               | 6 mg           |            | Co    | 0.024 0.00    | 0019 |
|                                                      | germanium     molybdenum                        | 1.0 mm               | 5 mg           |            | Cd    | 0.017 0.00    | 0021 |
|                                                      | · cobalt                                        | 0.7 mm               | 3 mg           |            | Mo    | 0.0021.0.00   | 022  |
|                                                      | · antimony                                      | 0.7 mm               | 2 mg           |            | MO    | 0.0031 0.000  | 1022 |
|                                                      | silver                                          | 0.6 mm               | 2 mg           |            |       |               |      |
|                                                      | zirconium                                       | 0.54 mm              | 1 mg           |            |       |               |      |
|                                                      | lanthanium                                      | 0.51 mm              | 0.8 mg         |            |       |               |      |
|                                                      | - — gallium                                     | 0.49 mm              | 0.7 mg         |            |       |               |      |
|                                                      | · tellurium                                     | 0.46 mm              | 0.7 mg         |            |       |               |      |
|                                                      | bismuth                                         | 0.37 mm              | 0.5 mg         |            |       |               |      |
|                                                      | - — thallium                                    | 0.35 mm              | 0.5 mg         |            |       |               |      |
|                                                      | apid                                            | 0.36 mm              | 0.4 mg         |            |       |               |      |
|                                                      | scandium                                        | 0.41 mm              | 0.2 mg         |            |       |               |      |
|                                                      | tantalum                                        | 0.23 mm              | 0.2 mg         |            |       |               |      |
| element that has                                     | vanadium<br>thorium                             | 0.26 mm (<br>0.20 mm | 0.1 mg         |            |       |               |      |
| a known biologic                                     | · uranium                                       | 0.17 mm              | 0.1 mg         |            |       |               |      |
| Data credit: role.                                   | samarium                                        | 0.19 mm              | 50 µg          |            |       |               | 45   |
| http://web2.airmail.net/uthman/elements_of_body.html | beryllium                                       | 0.27 mm<br>0.10 mm   | 36 µg<br>20 µg | :E 3/U L#3 |       |               | 70   |





