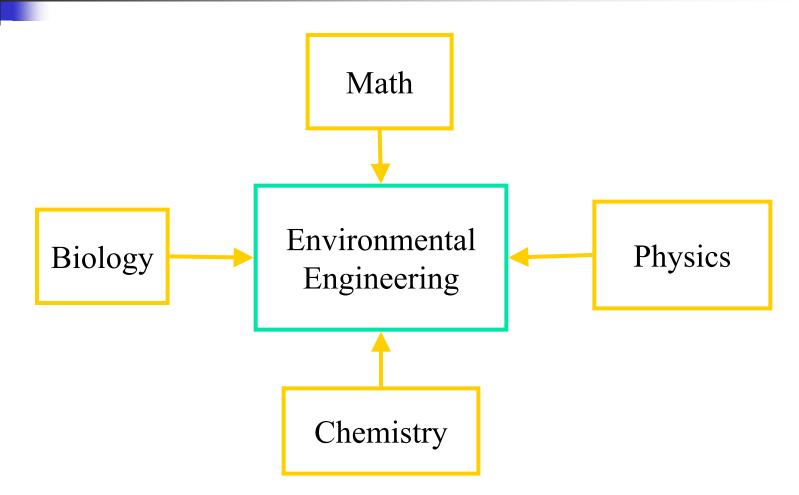
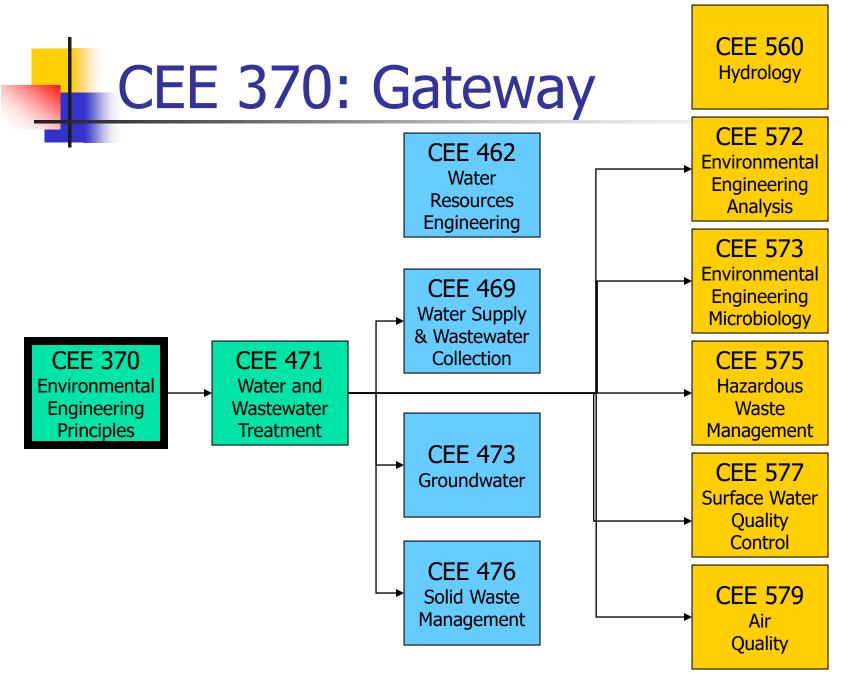
CEE 370 Environmental Engineering Principles

Lecture #3


Environmental Chemistry I: Units of Concentration


Reading: M&Z, Chapt 2

David Reckhow

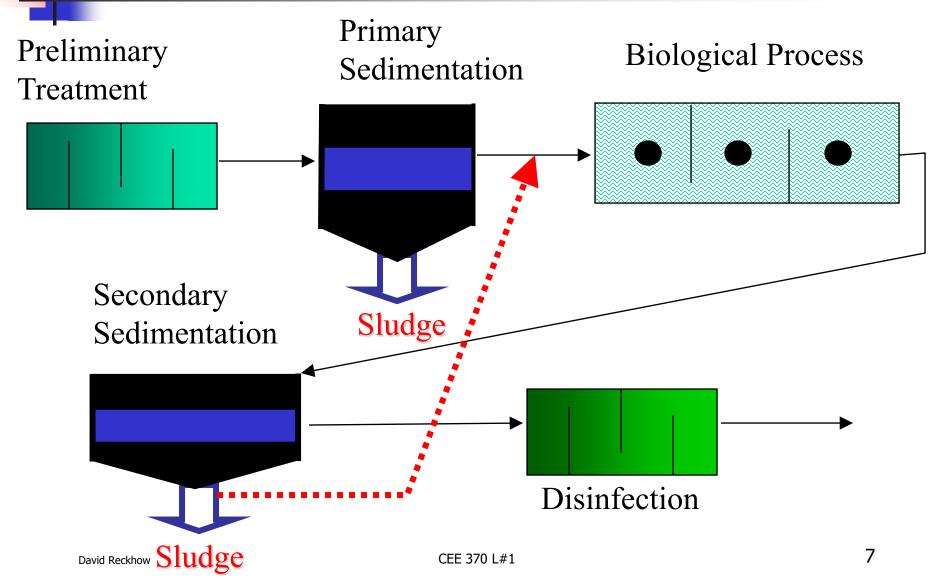
CEE 370 L#3

Environmental Engineering: Interdisciplinary

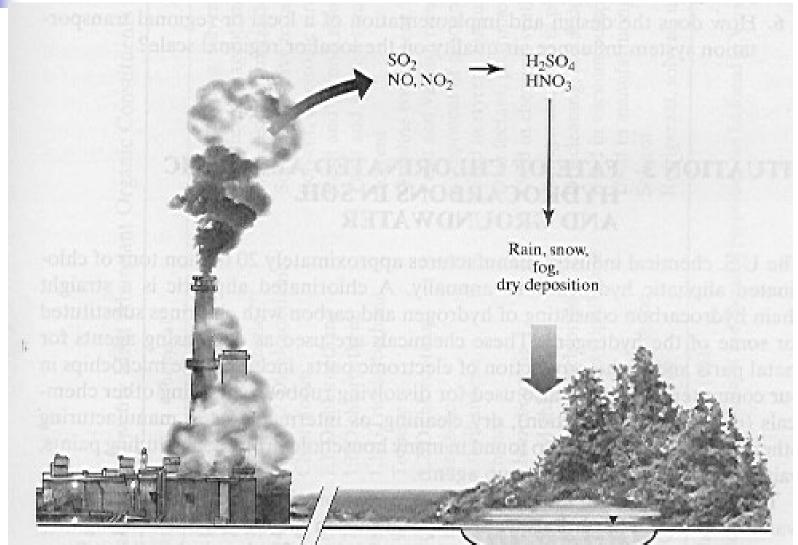
What Environmental Engineers Do

Three examples
 Water: Wastewater treatment
 Air: Acid Rain
 Solids: VOCs in Soils

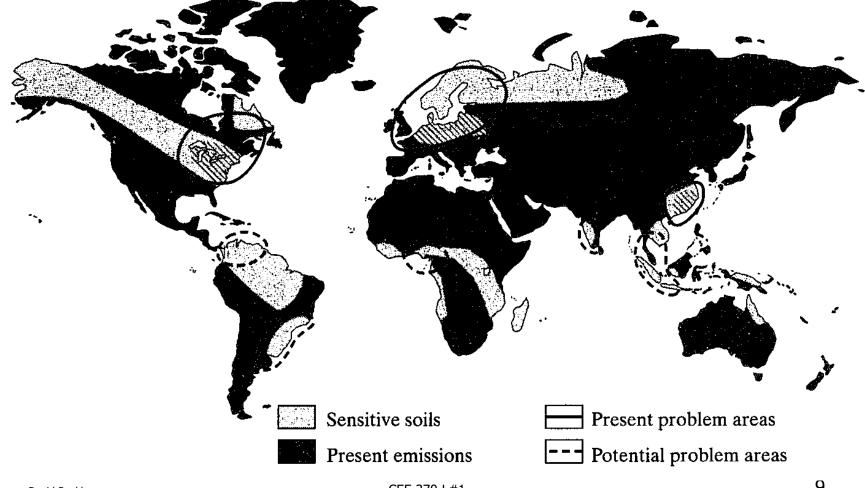
Secondary Clarifiers


Situation #1: Municipal WWT

Problem: you need to treat wastewater from a new suburban housing development


How do you design the plant?

- Process types, tank sizes, N or P removal,
- How do you operate the plant?
 - Treatment objectives, anaerobic or aerobic, seasonal variations, allow industrial users


Conventional WW Treatment

Situation 2: Acid Rain

Global nature of acid rain

CEE 370 L#1

Air pollution issues

- How to remove sulfur and nitrogen oxides from stack gases
- What to do with the wastewater produced
- What happens with these gases get into the atmosphere
- How are the air pollution problems transported & who is affected
- What impact do these emissions have on natural water and aquatic life
- Regional solutions

Situation 3: VOCs in Soil

Design & operation of treatment system For soil, sediment, groundwater, leachate What type of system Chemical, biological, physical What is the fate of the VOCs How quickly will they spread Will they form more toxic byproducts Trichloroethene to vinyl chloride

Rank	Chemical	Use	Chemical Formula
1	Dichloromethane	Paint stripping, solvent degreaser, blowing agent in foams	CH ₂ Cl ₂
2	Trichloroethene	Dry cleaning agent, metal degreaser solvent	C ₂ Cl ₃ H
3	Tetrachloroethene	Dry cleaning, metal degreaser, solvent, paint remover	C ₂ Cl ₄
4	<i>trans</i> 1,2- Dichloroethene	Solvent, additive to lacquer, low- temperature solvent for caffeine	C ₂ H ₂ Cl ₂
5	Chloroform	Solvent, electronic circuit manufacturing	CHCl ₃
6	1,1-Dichloroethane	Paint and varnish remover, metal degreaser, ore flotation	C ₂ C1 ₂ H ₄
7	1,1-Dichloroethene	Paint and varnish remover, metal de- greaser	C ₂ C1 ₂ H ₂
8	1,1,1-Trichloroethane	Solvent	C ₂ Cl ₃ H ₃
9	Toluene	Gasoline component, solvent thinner, adhesive solvent	C ₇ H ₈
10	1,2-Dichloroethane	Paint and varnish remover, metal degreaser, fumigant	C ₂ C ₁₂ H ₄

Rank	Chemical	Use	Chemical Formula
11	Benzene	Component of gasoline, used in chemical synthesis	C ₆ H ₆
12	Ethylbenzene	Used in styrene manufacturing, solvent, asphalt construction	C ₈ H ₁₀
13	Phenol	Disinfectant, pharmaceutical aid	C ₆ H ₅ OH
14	Chlorobenzene	Used in chemical synthesis	C ₆ H ₅ Cl
15	Vinyl chloride	Refrigerant, used in plastics industry	C ₂ ClH ₃
16	Carbon tetrachloride	Dry cleaning, metal degreasing, veterinary medicine	CCl ₄
17	Bis(2- ethylhexyl)phthalate	Used in vacuum pumps	C ₂₄ H ₃₈ O ₄
18	Naphthalene	Used in manufacturing mothballs and motor fuel, component of coal tar	C ₁₀ H ₈
19	1,1,2-Trichloroethane	Solvent	C ₂ Cl ₃ H ₃
20	Chloroethane	Refrigerant, solvent, used to produce tetraethyl lead	C ₂ ClH ₅

How can we use our knowledge of physical & chemical properties?

Chemical	Vapor Pressure (mmHg)	Henry's Constant (atm-m ³ /mole)	Water Solubility (mg/L)	Chemical Half-life (Years)
Carbon tetrachloride	90	0.0294	785	16–41
Chloroform	160	0.0040	8,200	742-3,000
Tetrachloroethene	14	0.0268	150	3.8×10^{8} - 9.9×10^{8}
Trichloroethene	60	0.0117	1,100	4.9×10^{5} - 1.3×10^{6}
Vinyl chloride	2,660	0.0224	2,700	>10

Table 1-2. Properties of Selected Chlorinated Aliphatic Hydrocarbons*

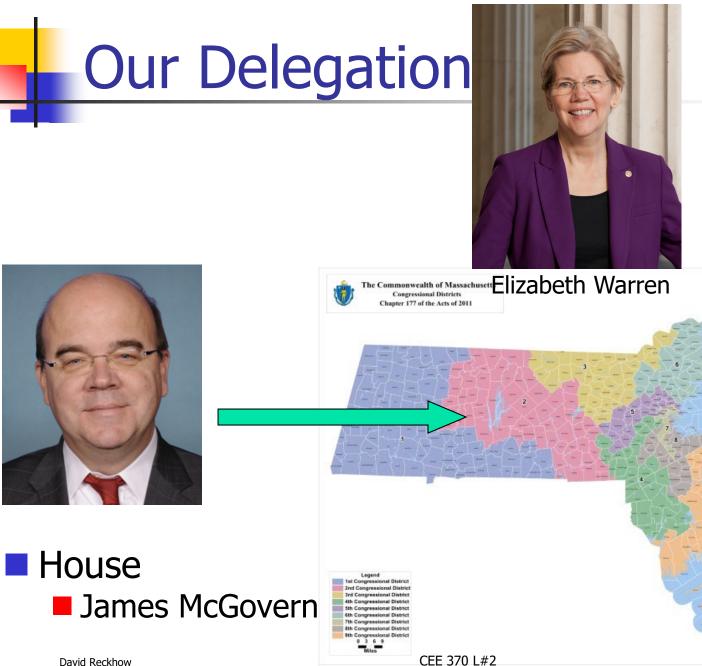
From Barbee, 1994.

*In later chapters, readers will learn about how these properties are used in evaluating and solving environmental problems.

From: Mihelcic, 1999

Field	Journal	Publisher
Environmental quality	Environmental Science and Technology	American Chemical Society
	Water Resources Research	American Geophysical Union
	Water, Air and Soil Pollution	Kluwer Academic Publications
Water treatment	Journal of the American Water Works Association	American Water Works Association
	Aqua	International Water Assn.
	Journal of the Environmental Engineering Division	American Society of Civil Engineers
Wastewater treatment	Water Environment Research	Water Environment Federation
	Journal of the Environmental Engineering Division	American Society of Civil Engineers
Solid waste	BioCycle	J. G. Press, Inc.
Hazardous waste	Hazardous Waste and Hazardous Materials	Mary Ann Liebert, Inc.
	Ground Water	Ground Water Publications, Inc.
Air pollution and control	<i>Journal of the Air and Waste Management Association</i>	Air and Waste Management Association
General	Chemical and Engineering News	American Chemical Society
	Civil Engineering	American Society of Civil Engineers

General Environmental Principles
 Course text & supplementary references
 Water & Wastewater Treatment
 Hammer & Hammer (or CEE 371 text)


•Government Sources

Source	Telephone Number	Address
Center for Environmental Research Information (CERI)	(513)569-7562	ORD Publications P.O. Box 19962 Cincinnati, OH 45219-0962
Superintendent of Documents	(202) 783-3238	Superintendent of Documents Government Printing Office Washington, DC 20402
RCRA Docket Information Center (RIC)	(800) 424-9346	RCRA Docket Information Center (RIC) Office of Solid Waste (OS- 305) U.S. Environmental Protection Agency 401 M Street, S.W. Washington, DC 20460
National Technical Information Service (NTIS)	(703) 487-4650 CEE 370 L#1	National Technical Information Service U.S. Department of Commerce Springfield, VA 22161 Washington, DC

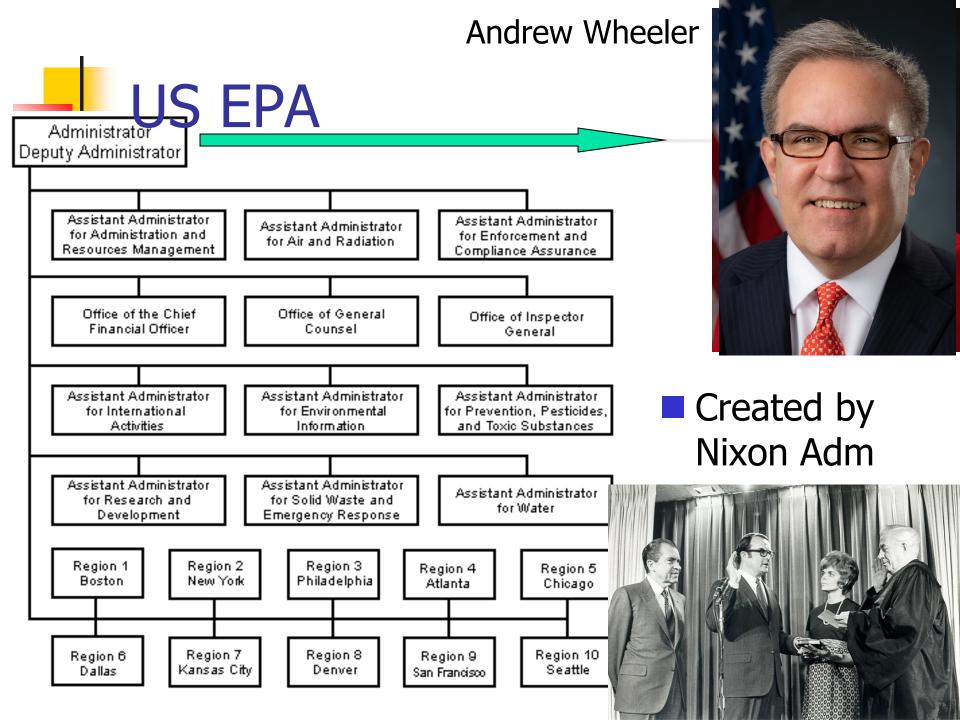
Laws and Regulations

Laws: passed by a majority of both *legislative* houses and signed by the President

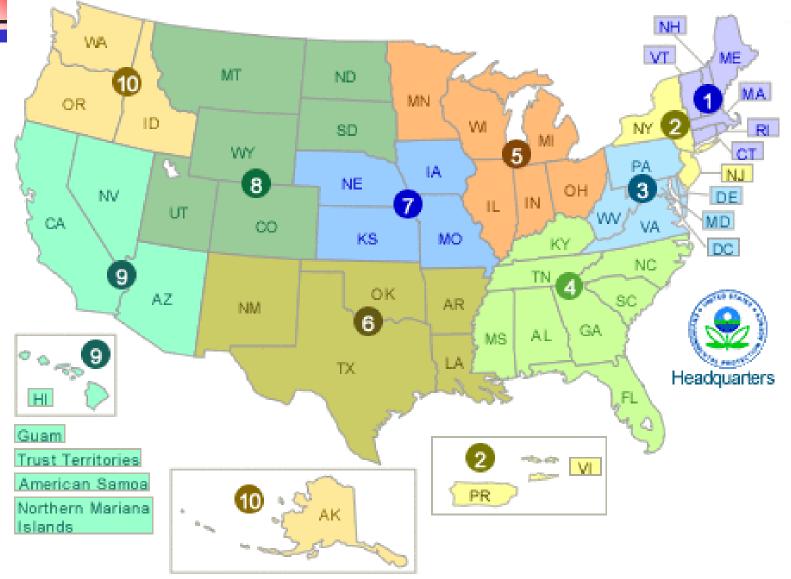
<u>Regulations</u>: established by *executive* branch (USEPA) in response to laws
 propose in Federal Register
 public comment and modification
 promulgation: into Code of Federal Regulations (CFR Part 40)

Ed Markey

19


1972: Federal Water Pollution Control Act

An "act" of Congress = a law


- PL 92-500 subsequently amended and now called the <u>Clean Water Act</u>
 - established water quality goals "fishable & swimmable" and timetable
 - established National Pollution Discharge Elimination System (NPDES)
 - construction grants for WW treatment
- Eventually required secondary treatment (30/30)
 - 30 mg/L BOD₅
 30 mg/L TSS

Laws: where to find them

Daily Federal Register Back to 1994: on-line <u>http://www.gpoaccess.gov/fr/index.html</u> Pre 1994: see Gov Docs in DuBois Annual summary (July) Code of Federal Regulations (CFR) Back to 1996/7: on-line <u>http://www.gpoaccess.gov/cfr/index.html</u> Pre 1996/7: see Gov Docs in DuBois

USEPA Regions

Legislative History

- 1899: Rivers and Harbors Act Prohibited disposal of solid objects in navigable waters
- 1948: Water Pollution Control Act first national water quality legislation
- 1970: National Environmental Policy Act RCRA (NEPA) SDWA CZMA
 - MPRSA required and Environmental Impact FIFRA OSHA NEPA Statement (EIS) for all federally-funded NWRSAA SWDA projects FDCA FWCA CÀA MBTA CÀA

1910

1920

1930

FEDERAL ENVIRONMENTAL LEGISLATION

1950

YEARS

1960

1940

FFCA

NAWCA

AIA

NWPA

FHSA

FLPMA

WQA-

EPCRA

SARA

1990

200

NWPA

ARPA

AIRFA

SMCRA

FLPMA

HMTA

1980

ESA

NCA

PWSA

WSBA

CAA

NHPA LWCFA

FWPRA

1970

MMPA

FWPCA

ODBA:SPA

UMTRAAA FIFRA-

NAGPRA

PPA

WRDA

APA

NHPA

NEEA

HMTUSA

CAAA

WRDA-

FEMIA

FEAPRA

LCCA

MWTA

FCRPA

HSWAA CERCLA

UORA

UMTRCA

CWA

TSC/

RGIAQR

OPA-

Legislative History

1970: USEPA formed

- 1972: Federal Water Pollution Control Act
 - PL 92-500 subsequently amended and now called the Clean Water Act
 - established water quality goals "fishable & swimable" and timetable
 - established National Pollution Discharge Elimination System (NPDES)
 - construction grants for WW treatment
 - Required industry-specific WW treatment technology
 - BPT: best practicable technology by 1977
 - BAT: best available technology by 1983

Legislative History (cont.)

1970: Clean Air Act national air quality standards amended several times since ('77 '90) 1974: Safe Drinking Water Act set national drinking water standards amended may times since 1976: Toxic Substances Control Act (TSCA) regulate new hazardous chemicals (e.g. PCBs)

Legislative History (cont.)

- 1976: Resource Conservation and Recovery Act (RCRA)
 - protect air, water and land from solid and hazardous wastes
 - defines hazardous wastes
- 1977: Clean Water Act Amendments
 - Best conventional pollutant technology (BCT)
 - Secondary treatment: 30 mg/L BOD₅ 30 mg/L TSS
 - Priority Pollutants (127 toxic compounds)
- 1980: Comprehensive Environmental Response, Compensation and Liabilities Act (CERCLA or Superfund)
 - established fund and mechanisms for cleaning existing hazardous waste sites

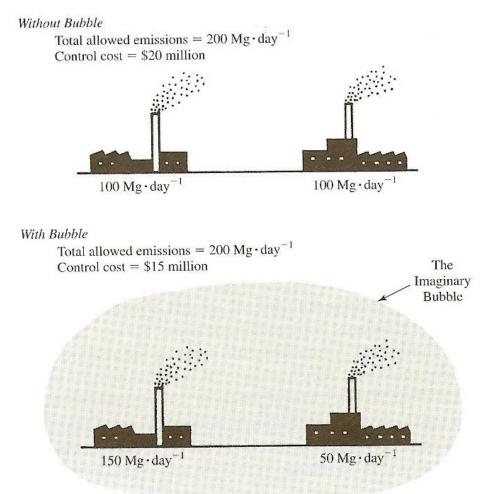
Regulatory Methods

Environmental Quality-Based Standards

cannot degrade environment beyond a certain level

- dependent on immediate environment
- more flexible

Effluent-Based Standards


- cannot discharge above a certain level of pollutant
- independent of immediate environment
- easier to establish and monitor

"Controlled Trading"

Bubble Policy

"Environmental rules now regulate each of the different processes in a plant. With this new policy we will draw an **imaginary bubble** around the whole plant and tell the company that it can find the most efficient way of controlling the plant's emissions as a whole. If it costs a dollar to control a pound of particulate pollution from one machine and fifty cents from another, the plant manager will quite reasonably choose to control fewer \$1 pounds and more 50 cent pounds. If the plant engineer can find a new way of reducing particulate emissions from a third machine for 30 cents a pound, he will remove as many of these pounds as he can in preference to either the 50 cent or one dollar pounds. As long as no more particulates escape from the overall bubble than before, the company's engineers can continue to innovate."

Douglas Costle, EPA Administrator, 1979

From: Davis & Masten, 2004

Controlling Air Pollution in Cities

Source	Pollutants	Methods of Control
Industries	Volatile organics	Require reduced emissions
	Volatile chlorofluorocarbons	Require reduced emissions
	Particulate inorganics	Require reduced emissions
Automobiles	Hydrocarbons	Improved discharge nozzles at filling stations, improved ventilation within the gasoline tank
	Products of incomplete combustion	Improved combustion by requiring improved combustion efficiency (auto manufacturer), regular engine maintenance by requiring vehicle emission testing, requiring gasoline stations to provide only oxygenated fuels.
	Chlorofluorocarbons from air conditioners	Require the redesign of the air conditioner so that future automobiles can use other refrigerants.

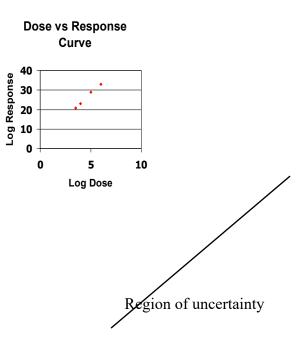
Basis for Setting Standards

Experimentation

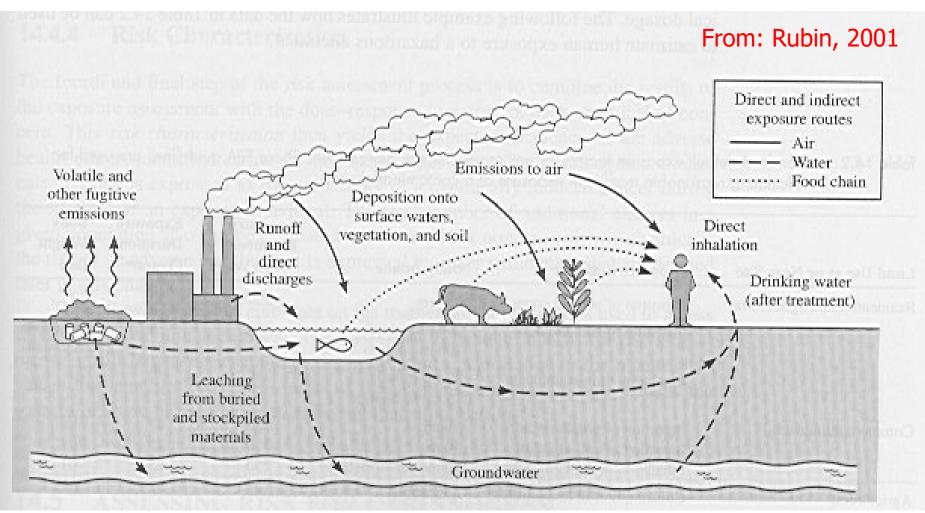
 animal testing, human exposure

 Attainability

 economic & technical feasibility


 Established practice
 Risk Assessment

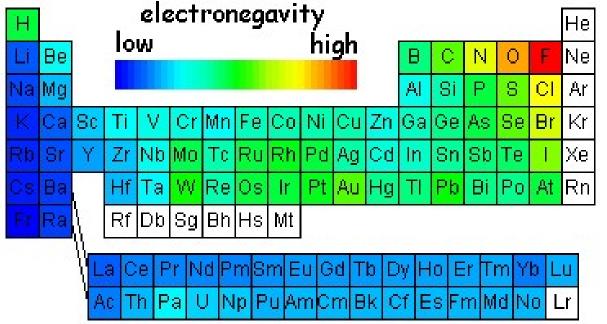
Definitions


- Risk: the probability of occurrence of adverse health effects in humans
- Risk Assessment: the process of characterizing the nature and probability of adverse health effects of human exposure to environmental hazards
- Risk Management: the process of evaluating and selecting among alternative regulatory actions

Four steps in a Risk Assessment

- Hazard Identification
 what is it?
- Dose Response
 - see graph
- Human Exposure
 - actual doses and routes
- Risk Characterization

Routes of exposure


CEE 370 L#2

Comparative Risks

All increase chance of death in any year by 0.000001

Smoking 1.4 cigarettes	Cancer, heart disease
Spending 1 hr. in a coal mine	Black lung disease
Living 2 days in NYC or Boston	Air pollution
Living 2 months in Denver	Cancer caused by cosmic radiation
One chest X-ray	Cancer caused by radiation
Eating 40 tbs. of peanut butter	Liver cancer caused by Aflatoxin B
Drinking 30 12-oz. cans of diet soda	Cancer caused by saccharin
Living 150 yrs. within 20 miles of a nuclear power plant	Cancer caused by radiation

Non-Polar Covalent bond

Electrons are perfectly shared between atoms

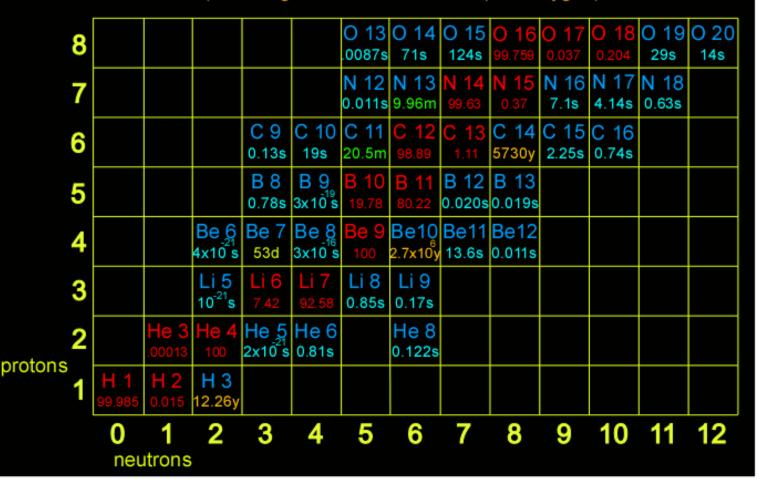
- Polar Covalent bond
 - Electrons shared but not equally

Ionic bond

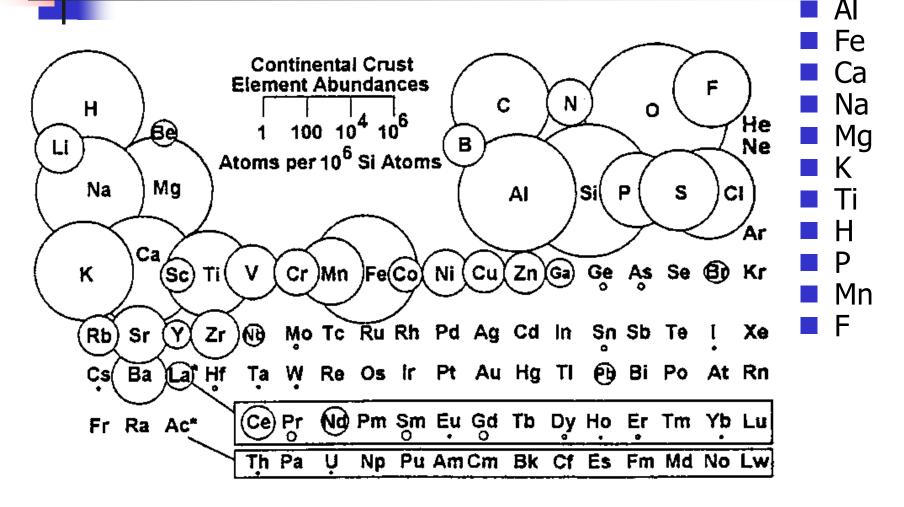
- Electrons are entirely associated with one of the atoms
 - The more electronegative one

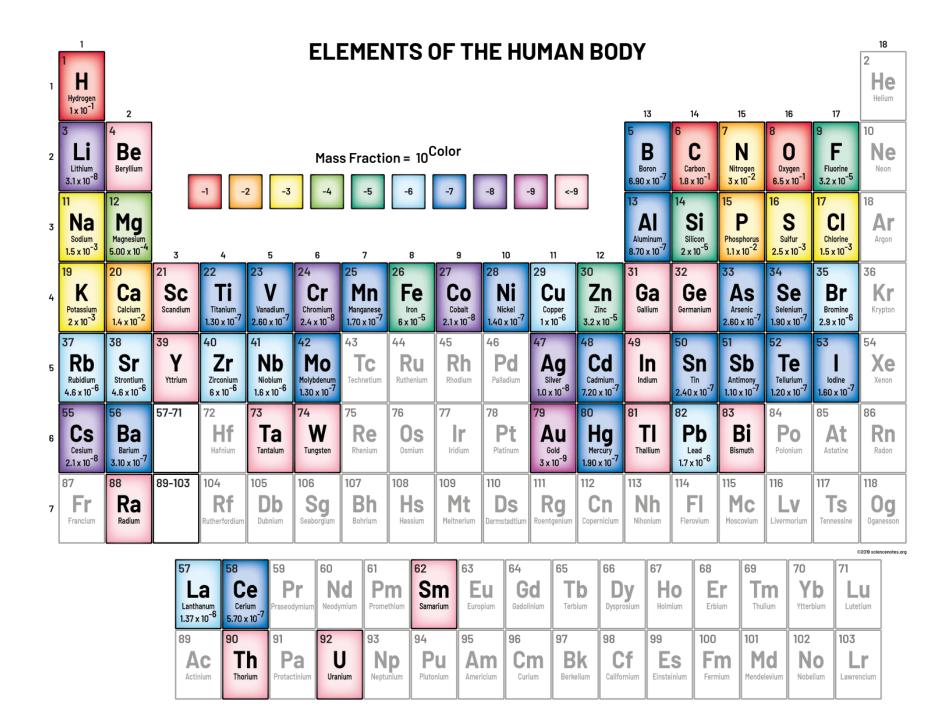
δ-

()


Η

δ+


Isotopes


Chart of the Nuclides

(Including the first 8 elements up to Oxygen)

Elemental abundance in crust

Gillette Stadium, Sunday

Tom Brady, Patriots Steamroll Steelers to Make Early-Season Statement

i-adsystem.com..

Microcystis aeruginosa

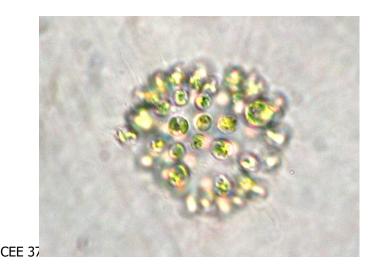
Seneca Lake NY, Friday

NEWS WEATHER SPORTS FEATURES CONTESTS ON T

Harmful Algal Blooms found in Seneca Lake

Friday, September 6th 2019, 10:51 AM EDT by Caitlin Murphy

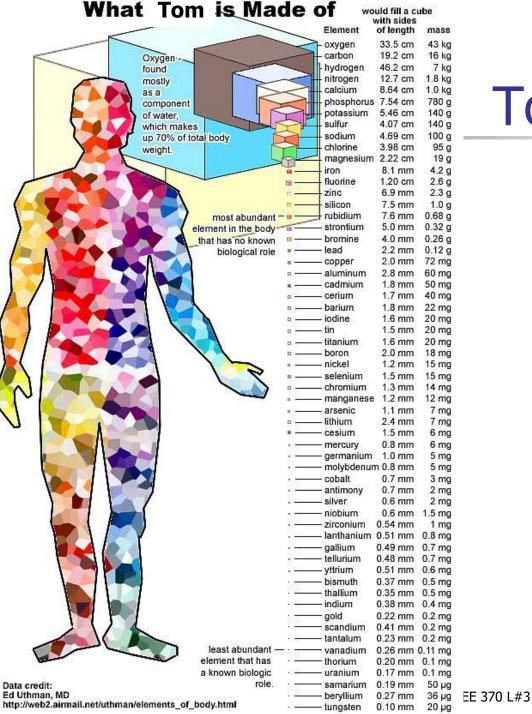
Tom vs Miocrocystis


Tom Brady

- 70,514 passing yards
- 96 x 10³ g
 - 58% water
 - 42% dry
- 3 offspring in 42 yrs

Microcystis aeruginosa

- No passing yardage
- 2.2 × 10⁻¹¹ g
 - 76% water
 - 24% dry
- 10⁵⁶³ offspring in 42 years

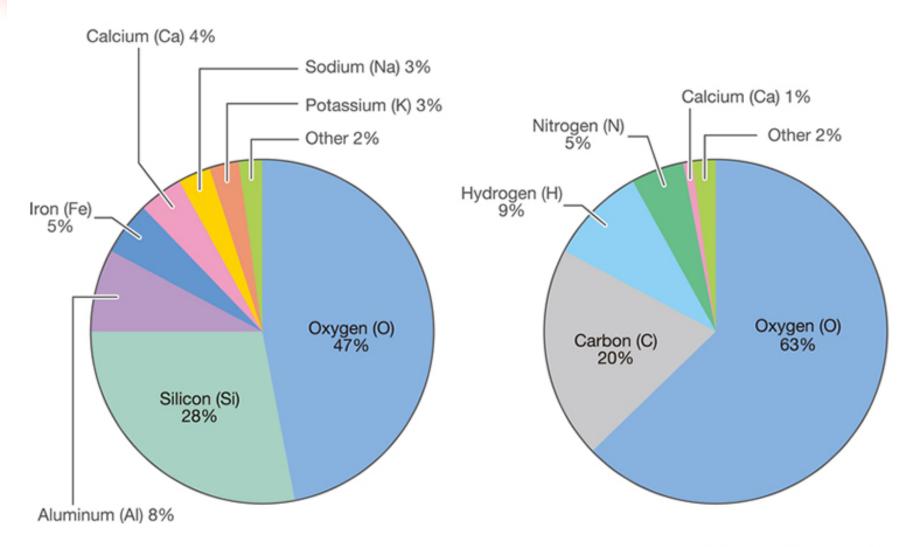


SI Unit prefixes (large)

Factor	Prefix	Symbol
101	deka	da
10 ²	hecto	d
10 ³	kilo	k
106	mega	Μ
10 ⁹	giga	G
1012	tera	Т
1015	peta	Ρ
10 ¹⁸	exa	E

SI Unit prefixes (small)

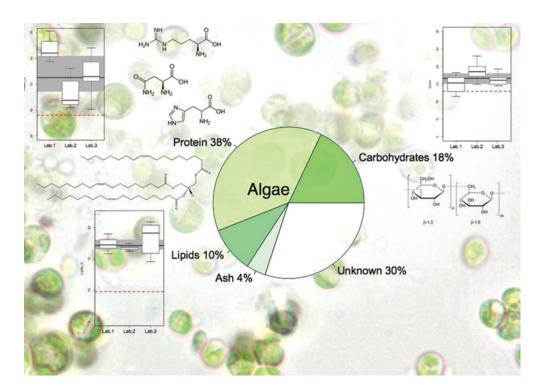
Factor	Prefix	Symbol
10-1	deci	d
10-2	centi	С
10-3	milli	m
10-6	micro	μ
10-9	nano	n
10-12	pico	р
10 ⁻¹⁵	femto	f
10-18	atto	а



Tom vs Microctys.

mM/L	M/M-P
11000	147
1400	16
120	1
170	1.3
250	1.7
100	0.56
3100	23
7	0.054
0.7	0.0075
0.42	0.0038
0.08	0.0008
0.035	0.00038
0.024	0.00019
0.017	0.00021
0.0031	0.000033
	11000 1400 120 170 250 100 3100 7 0.7 0.7 0.7 0.42 0.08 0.035 0.024 0.017

Main elements constituting the earth's crust


Main elements constituting the human body

© CSLS/The University of Tokyo

dsa

Laurens et al., 2012 [Anal. Chem. 84:1879]

■ <u>To next lecture</u>