Updated: 5 September 2019

Print version

CEE 370 Environmental Engineering Principles

Lecture #2
Introduction II:
Legislation & Regulations

Reading: M&Z: Chapter 1; Loehr paper (handout)

Hardin's "Tragedy of the Commons" Science, 13 Dec 1968 Also in html

Course Administration

- Schedule
 - Lecture MWF: 10:10 11:00
 - Labs MTuWTh: 2:30-5:30
- Course Syllabus
- Book: Mihelcec & Zimmerman, 2014
 - supplemented by other texts

e.g., Davis & Masten, 2009

- Detailed Course Outline
- Homework policy
 - No more than 9; most graded
- Exams
 - Mid-Term: Wed Oct 23rd at 7:30PM
 - Final: Thursday Dec 19th at 8:00AM
- Web site
 - http://www.ecs.umass.edu/cee/reckhow/courses/370/

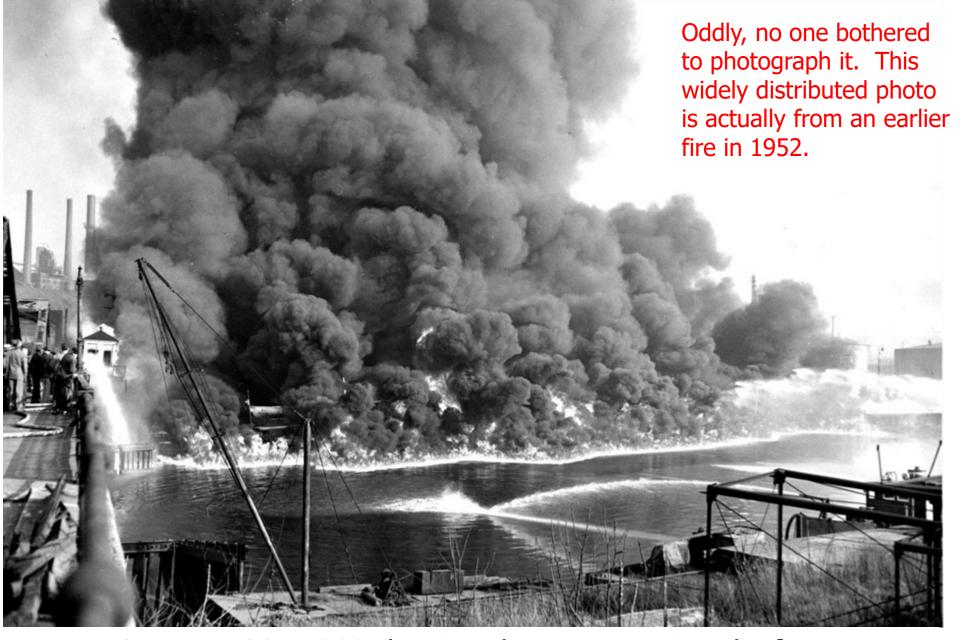
- Mihelcic & Zimmerman, 2014
 - An excellent overview
 - Presents introduction to field and scientific foundations
 - Good prelude to CEE 471, which is more focused on water engineering
 - Good coverage of sustainability, LCA
 - However, no book is error-free
 - Please report other errors you might find
 - I'll pass on anything I notice to you

Other reference texts

- Mihelcic, James R., <u>Fundamentals of Environmental Engineering</u>. J. Wiley & Sons Inc., 1999
 - One copy in the UMass Science & Engineering Library
- Nazaroff & Alvarez-Cohen, <u>Environmental Engineering Science</u>, John Wiley & Sons, Publ., 2001
 - One copy in the UMass Science & Engineering Library
- Masters, <u>Introduction to Environmental Engineering and Science</u>, Prentice Hall, 2nd Edition, 1998.
 - Two copies in the UMass Science & Engineering Library: TD145 .M33 1998
- Sincero & Sincero, <u>Environmental Engineering</u>: A <u>Design Approach</u>, Prentice Hall, 1996.
- Henry & Heinke, <u>Environmental Science and Engineering</u>, 2nd Edition, Prentice Hall, 1996.
- Davis & Cornwell, <u>Introduction to Environmental Engineering</u>, 4th Edition, McGraw-Hill, Inc., 2008
- Vesilind & Morgan, <u>Introduction of Environmental Engineering</u>, Thomson, 2004
 One copy in the UMass Science & Engineering Library
- Rubin, <u>Introduction to Engineering & the Environment</u>, McGraw-Hill, 2001
 - One copy in the UMass Science & Engineering Library

Homeworks

- Best way to learn quantitative aspects of the course
- Good preparation for the exams
- Must be turned in on time
- Must be organized and legible
- Many issues regarding presentation
 - Significant figures


Quantity	Number of Significant Figures
4,784	
36	
60	
600	
6.00 x 10 ²	
30.02	
0.02	
0.020	
600.00	

Homeworks

- Best way to learn quantitative aspects of the course
- Good preparation for the exams
- Must be turned in on time
- Must be organized and legible
- Many issues regarding presentation
 - Significant figures

Quantity	Number of Significant Figures
4,784	4
36	2
60	1 or 2
600	1 or 2 or 3
6.00 x 10 ²	3
30.02	4
0.02	1
0.020	2
600.00	5

On June 22, 1969 the Cuyahoga River Caught fire, and so did the US environmental movement (see: 8/1/69 issue of Time Magazine)

But the seeds were planted earlier

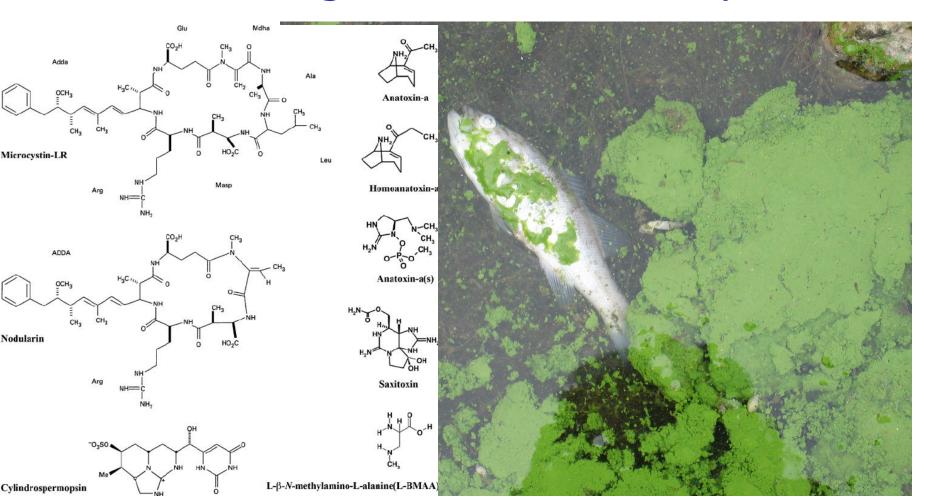
Two environmental pioneers

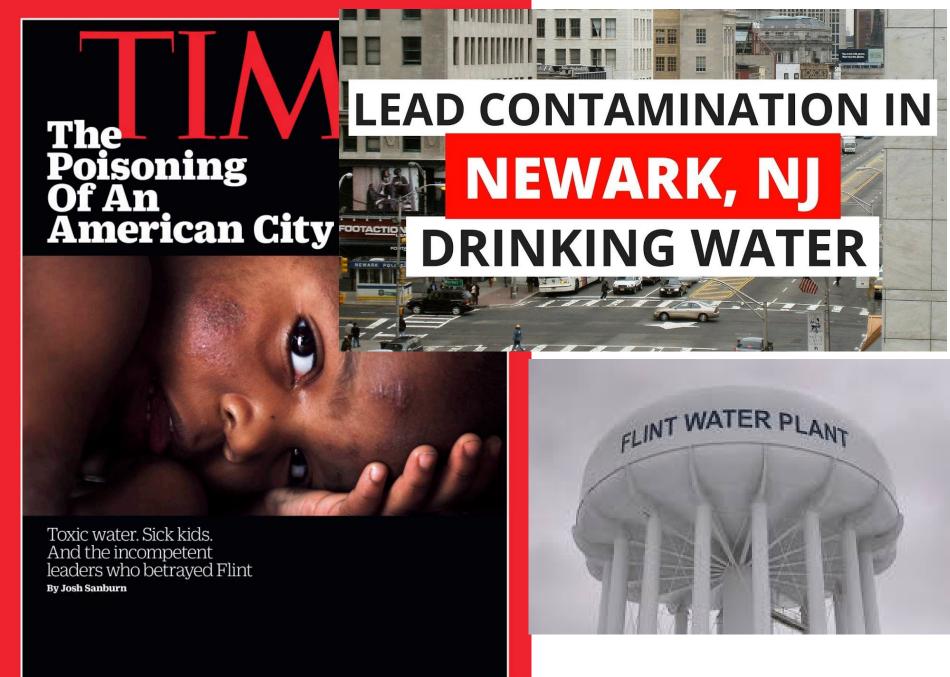
Birth of the environmental movement


Rachel Carson

1907-1964

James Lovelock


1919-present



4

Cyanobacteria

WBZ Aug 13, 2019 news story

Contaminants in Flint Hot Water

- Water Defense, an environmental nonprofit
 - 2010: founded by actor Mark Ruffalo
 - 2013: Scott Smith appointed chief technology officer
 - The Water Bug
 - The Huffington Post, May 23, 2016
 - "Mark Ruffalo's water nonprofit has allied itself with an opportunistic sponge salesman"
 - Recommended that Flint residents not bathe in the city's water

The Media Circus

Ruffalo advises against bathing

May 4, 2016

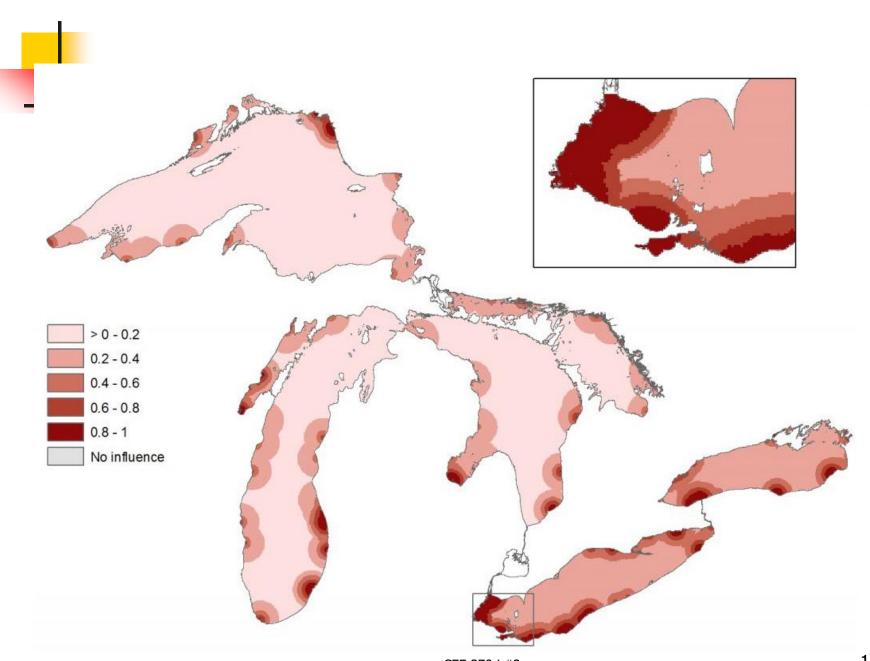
Cites elevated DBPs in water heaters

Enteric illuscess increased as a result?

Environmental Engineering

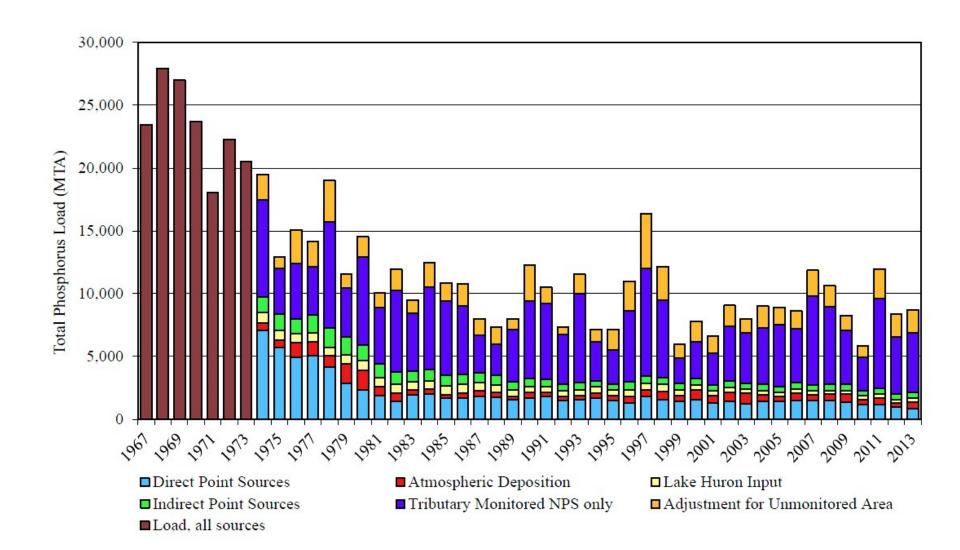
- The application of science and engineering principles to minimize the effect human activity has upon the environment.
 - We cannot possibly eliminate human effects on the environment, but such effects can be minimized through public education, conservation, regulation, and the application of good engineering practice.
 - Ray
- A field in which one applies the basic fundamentals of mathematics, physics, chemistry and biology to the protection of human health and the environment
 - Mihelcic, 1999

Sustainability

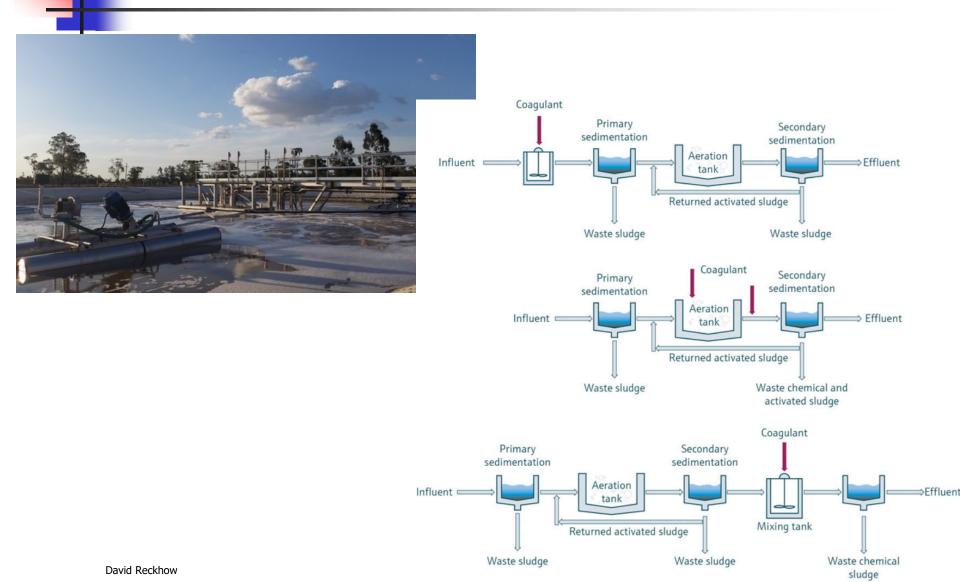

- "Development which meets the need of the present without compromising the ability of the future to meet its needs"
 - Brundtland Commission report, 1986

Satellite view

Green color is ??



Cultural Eutrophication


- Many correlated WQ problems
 - Floating mats of algae
 - Low DO
 - High P?

Phosphorous loading to Lake Erie

Better wastewater treatment

TABLE 2.6 Examples of Commercially Important Surfactants^a

Common	Name of	Surfactant
Class (Acronym)		

General Structure

Anionic Surfactants

Soaps

 $R - CH_2 - COO^{\Theta}Na^{\Theta}$, $R = C_{10-16}$

- Anionics
 - **65%**
- Cationics
 - **7**%
- Nonionics
 - **28%**

Linear alkylbenzene sulfonates (LAS)

$$R \longrightarrow \bigcup_{\substack{\parallel \\ 0}} S \longrightarrow O^{\Theta} Na^{\Theta}, R = C_{10-13}$$

Secondary alkyl sulfonates (SAS)

$$R_1 > CH - S - O^{\Theta} Na^{\Theta}, R_1, R_2 = C_{11-17}$$

Fatty alcohol sulfates
(Alkyl sulfates, FAS)

R-CH₂-O-S-O-Na
$$^{\odot}$$
, R = C₁₁₋₁₇

Cationic Surfactants

Quaternary ammonium chloride (QAC)

$$\begin{bmatrix} R_1 & \bigoplus_{N \leq R_3} & R_4 \\ R_2 & N \leq R_4 \end{bmatrix} Cl^{\Theta}, \quad \begin{aligned} R_1 &= & R_2 &= & C_1 \\ R_3 &= & R_4 &= & C_{16\text{-}18} \end{aligned}$$

Nonionic Surfactants

From: Schwarzenbach et al., 1993, pg. 38

Alkylphenol polyethyleneglycol ethers (APEO)

R-(__)-0-

 $R = C_{8-12}$ O)_n H, n = 5-10

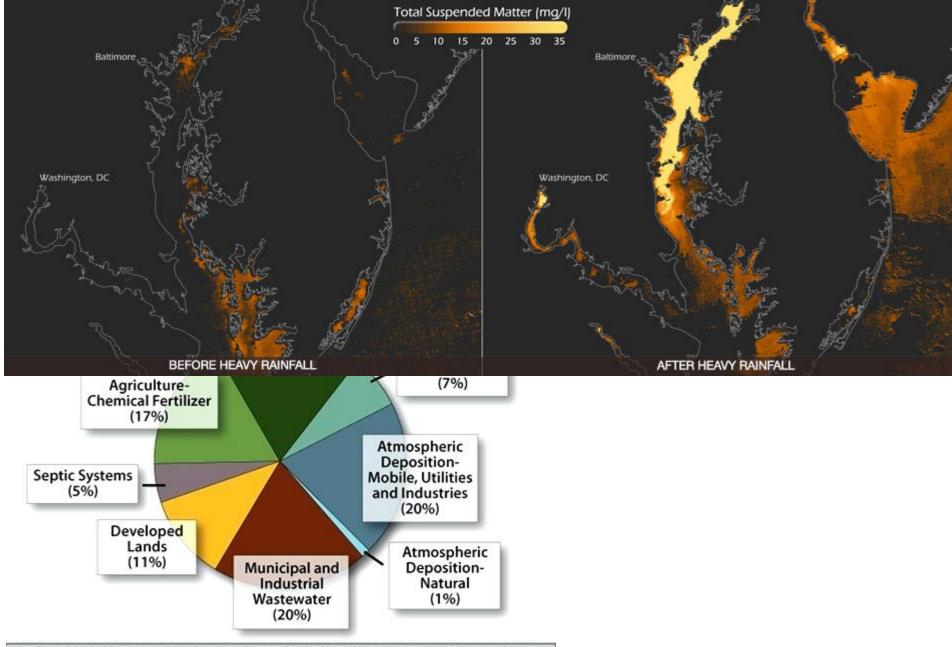
Fatty alcohol polyethyleneglycol ethers (AEO)

 $R-CH_2-O-(CH_2CH_2O)_n H$,

 $R = C_{7-17}$ n = 3-15

David Reckhow

^aFrom Piorr (1987).

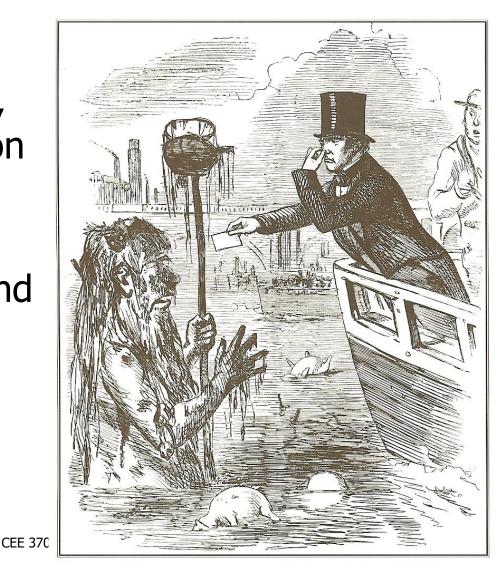

Powdered Detergents

	Component	Examples	
	Anionic surfactants	Alkylbenzene sulfonates	
		Fatty alcohol sulfates	
_		Fatty alcohol ether sulfates	
7		Alpha-olefln sulfonates	
_	Nonionic surfactants	Alkyl and nonylphenyl poly(ethylene glycol) ethers	
Idida	Suds-controlling agents	Soaps, silicon oils, paraffins	
<u>)</u>	Foam boosters	Fatty acid monoothanol amides	
5	Chelaters (builders)	Sodium tripolyphosphate	
	Ion exchange	Zeolite 4A, poly(acrylic acids)	
	Alkalies	Sodium carbonate	
5	Cobuilders	Sodium citrate	
J		Sodium Nitrilotriacetate	
-	Bleaching agents	Sodium perborate	
	Bleach activators	Tetraacetylethylenediamine	
Ź	Bleach stabilizers	Ethylenediaminetetraacetate	
y picai	Fabric softeners	Quaternary ammonium compounds	
<u>5</u>	Antiredeposition agents	Cellulose ethers	
/	Enzymes	Proteases, amylases	
_	Optical brighteners	Stilbene derivatives	
	Anticorrosion agents	Sodium silicate	
	Fragrances		
	Dyes and blueing Agents		
	Formulation aids		
	Fillers and water	Sodium sulfate CEE 680 #31	
Dav	id Reckhow	CEE 000 #31	

23

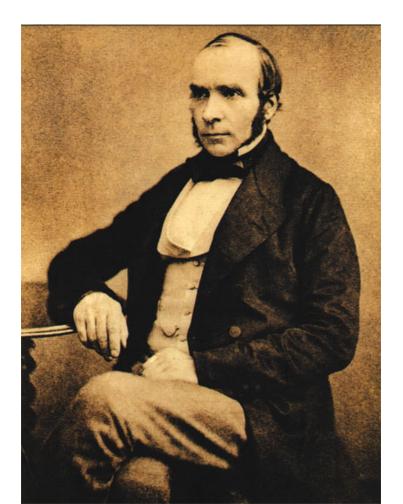
Liquid Detergents

Component	Examples	
Anionic surfactants	Alkylbenzene sulfonates	
	Fatty alcohol ether sulfates	
	Soaps	
Nonionic surfactants	poly(ethylene glycol) ethers, Soaps	
Suds-controlling agents	Soaps	
Foam boosters	Fatty acid alkanolamides	
Enzymes	Proteases	
Builders	Potassium diphosphate	
	sodium tripolyphosphate	
	sodium citrate	
	sodium silicate	
Formulation aids	Xylene sulfonates, ethanol, propylene glycol	
Optical brighteners	Stilbene derivatives	
Stabilizers	Triethanolamine	
Fabric softeners	Quaternary ammonium salts	
Fragrances		
Dyes		
Water		

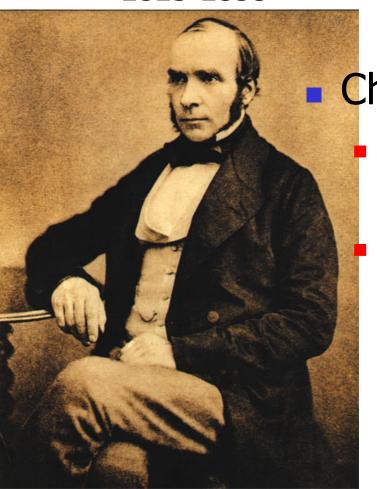


Note: Does not include loads from the ocean, tidal shoreline erosion, or direct atmospheric deposition to tidal waters. Wastewater loads based on measured discharges; other loads are based on an average-hydrology year using the Chesapeake Bay Program Watershed Model Phase 4.3 (Chesapeake Bay Program Office, 2009).

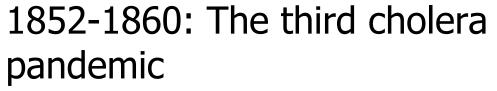
There once was a time when ...


- We had no clean drinking water sources, treatment or distribution systems
- No wastewater collection, treatment and discharge systems

David Reckhow CEE



What did he do for us?


John #1: Dr. John Snow

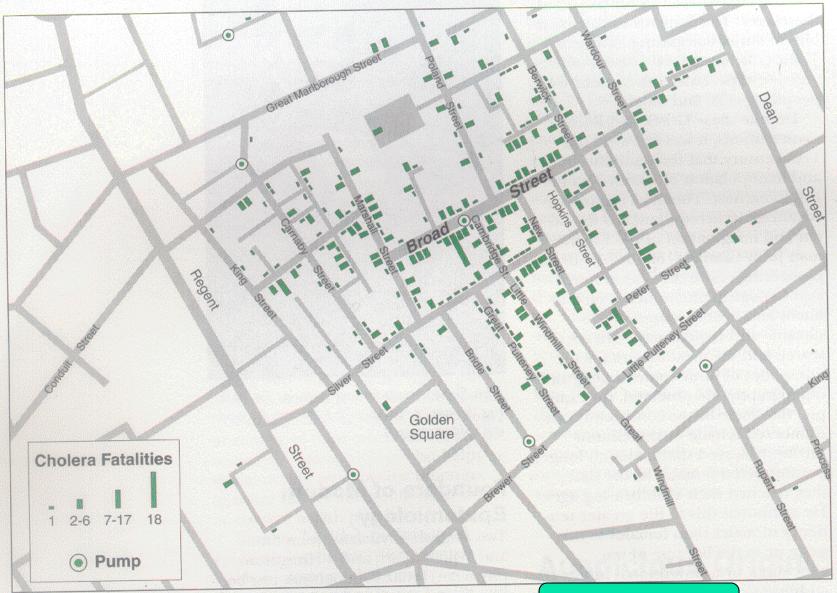
1813-1858

Cholera

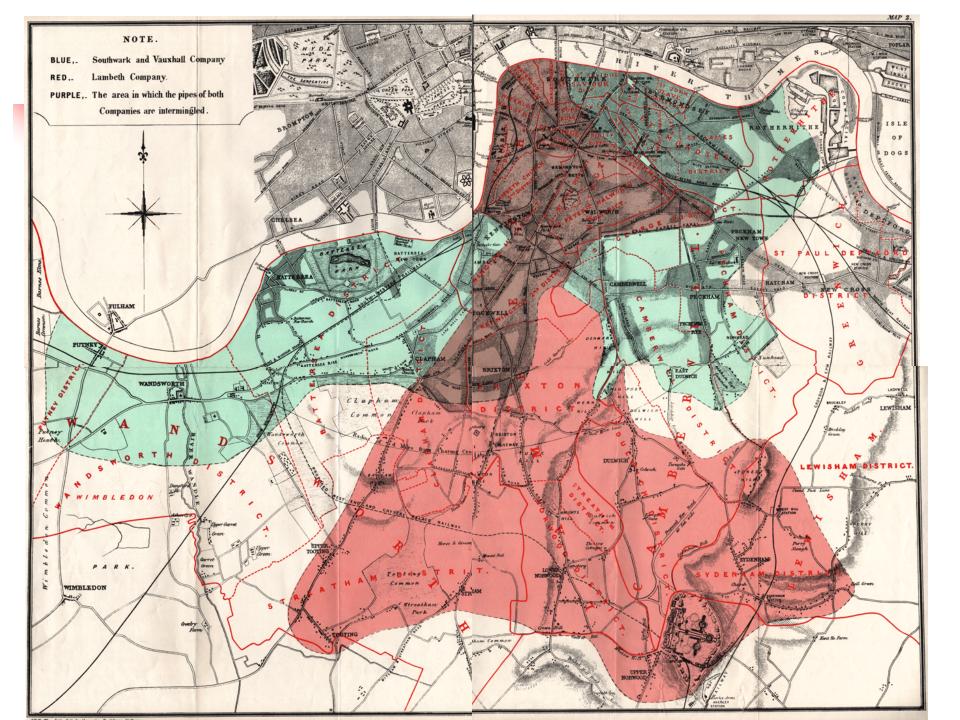
First emerged in early 1800s

- Snow showed the role of water in disease transmission
 - London's Broad Street pump (Broadwick St)

THE **GHOST MAP** The Story of London's Most Terrifying Epidemicand How It Changed Science, Cities, and the Modern World


28

Minama the amount of diagraphical but it


Soho, Westminster

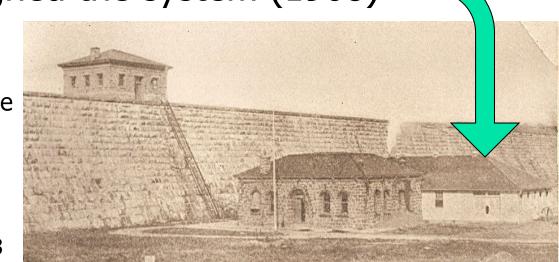
Cluster Map of Fatal Cholera Cases in London, 1854

Source: Adapted from John Snow, Snow on Cholera (New York: Hafner, 1965).

Picadilly Circus

John #2: Dr. John L. Leal

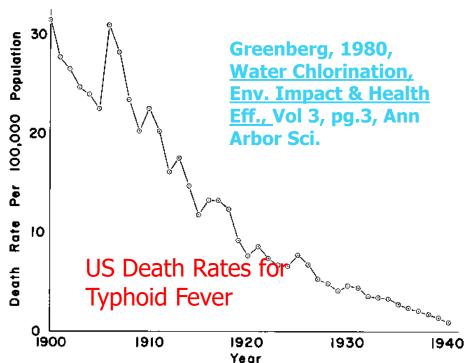
- Jersey City's Boonton Reservoir
- Leal experimented with chlorine, its effectiveness and production



1858-1914

George Johnson & George Fuller worked with Leal and designed the system (1908)

"Full-scale and continuous implementation of disinfection for the first time in Jersey City, NJ ignited a disinfection revolution in the United States that reverberated around the world"


M.J. McGuire, <u>JAWWA</u> 98(3)123

Chlorination

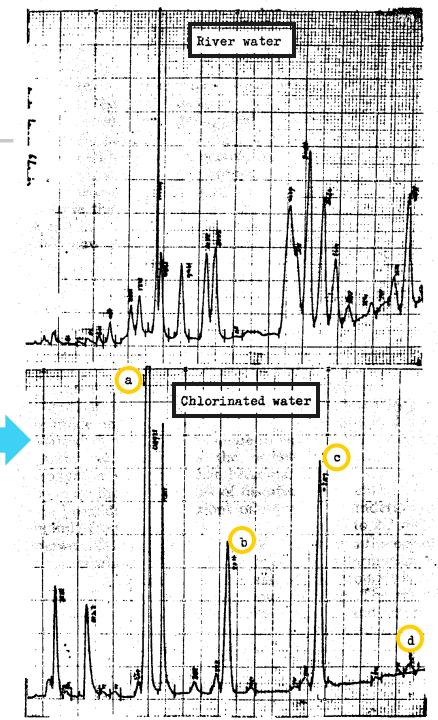
1-2 punch of filtration& chlorination

Melosi, 2000, <u>The Sanitary City</u>, John Hopkins Press

#3: Johannes J. Rook

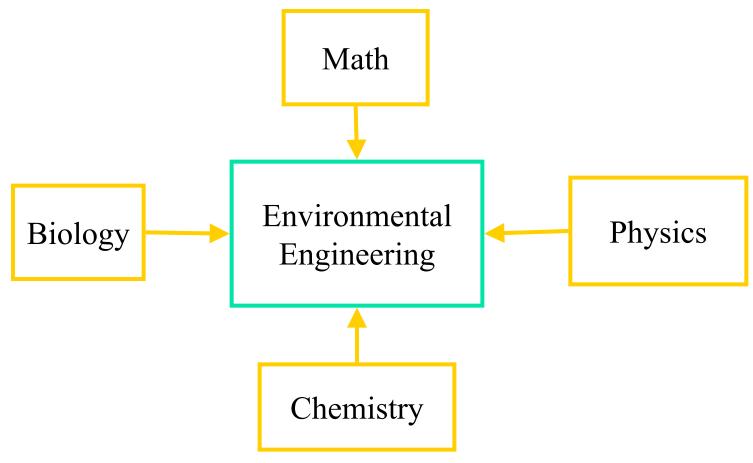
Short Biography

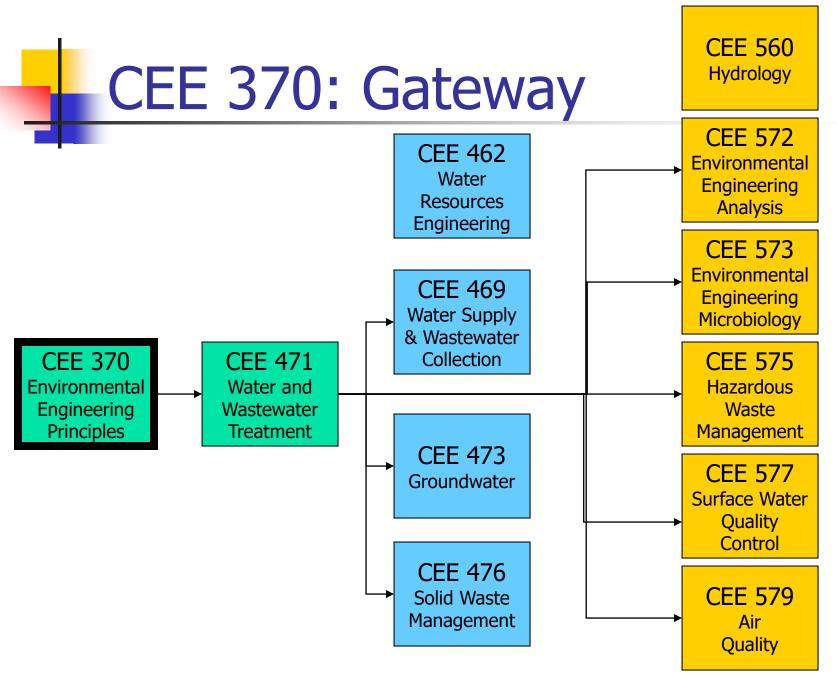
- Education
 - PhD in Biochemistry: 1949
- Work experience
 - Technological Univ., Delft (~'49-'54)
 - Laboratory for Microbiology
 - Lundbeck Pharmaceuticals in Copenhagen, (~'55-?)
 - Noury Citric acid Factory (in Holland)
 - Amstel Brewery
 - Rotterdam Water Works by 1963, chief chemist (1964-1984).
 - 1984-1986; Visiting Researcher at Lyonnaise des Eaux, Le Pecq.



Early Research

- 1955, Microbiological Deterioration of Vulcanized Rubber
 - Applied Micro.
- 1964, secured funds for a GC at Rotterdam
 - Carlo Erba with gas sample loop


John Rook & DBPs


- Major Contributions
 - Brought headspace analysis from the beer industry to drinking water
 - T&O problems
 - Found trihalomethanes (THMs) in finished water
 - Carcinogens !?!
 - Published in Dutch journal <u>H2O</u>, Aug 19, 1972 issue
 - Deduced that they were formed as byproducts of chlorination
 - Proposed chemical pathways

Environmental Engineering: Interdisciplinary

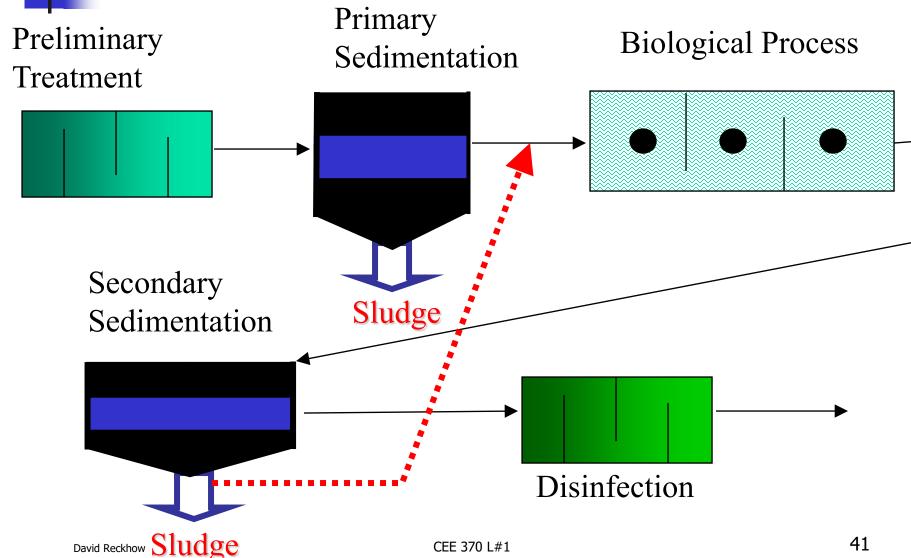
What Environmental Engineers Do

■Three examples

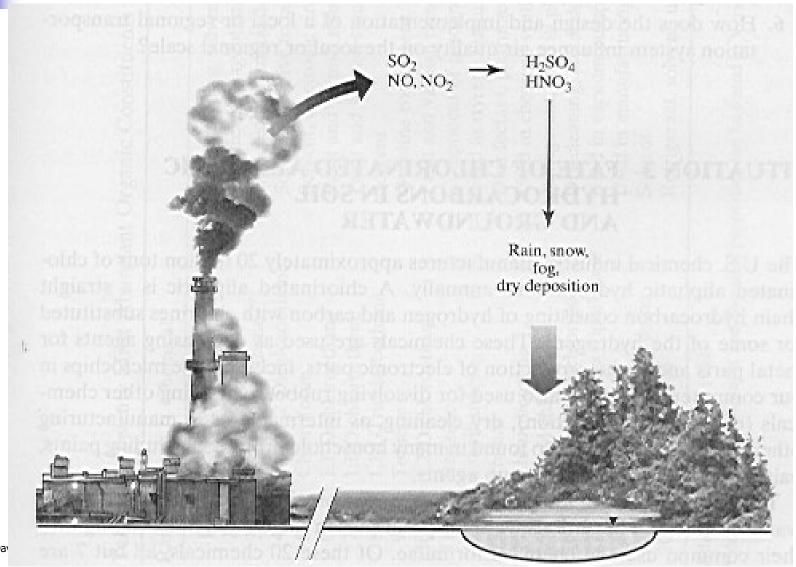
■ Water: Wastewater treatment

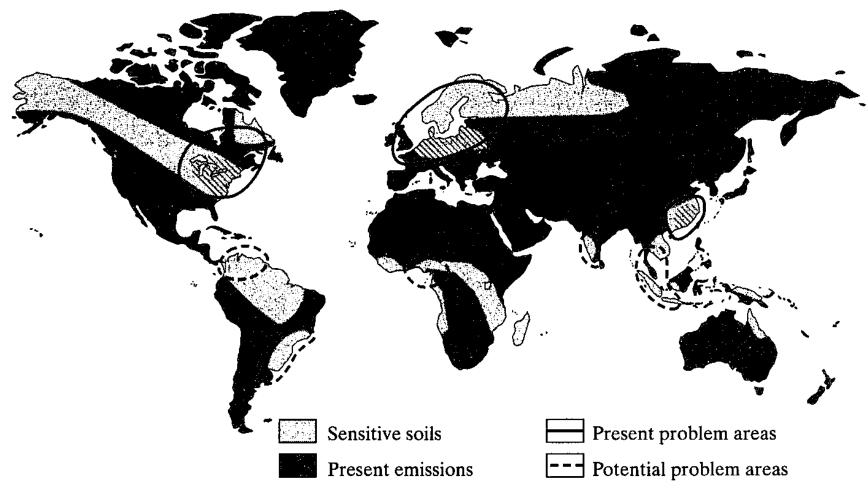
Air: Acid Rain

Solids: VOCs in Soils



Situation #1: Municipal WWT


- Problem: you need to treat wastewater from a new suburban housing development
 - How do you design the plant?
 - Process types, tank sizes, N or P removal,
 - How do you operate the plant?
 - Treatment objectives, anaerobic or aerobic, seasonal variations, allow industrial users


Conventional WW Treatment

Situation 2: Acid Rain

Global nature of acid rain

Air pollution issues

- How to remove sulfur and nitrogen oxides from stack gases
- What to do with the wastewater produced
- What happens with these gases get into the atmosphere
- How are the air pollution problems transported & who is affected
- What impact do these emissions have on natural water and aquatic life
- Regional solutions

Situation 3: VOCs in Soil

- Design & operation of treatment system
 - For soil, sediment, groundwater, leachate
- What type of system
 - Chemical, biological, physical
- What is the fate of the VOCs
- How quickly will they spread
- Will they form more toxic byproducts
 - Trichloroethene to vinyl chloride

Rank	Chemical	Use	Chemical Formula
1	Dichloromethane	Paint stripping, solvent degreaser, blowing agent in foams	CH ₂ Cl ₂
2	Trichloroethene	Dry cleaning agent, metal degreaser solvent	C ₂ Cl ₃ H
3	Tetrachloroethene	Dry cleaning, metal degreaser, solvent, paint remover	C ₂ Cl ₄
4	trans 1,2- Dichloroethene	Solvent, additive to lacquer, low- temperature solvent for caffeine	C ₂ H ₂ Cl ₂
5	Chloroform	Solvent, electronic circuit manufacturing	CHCl ₃
6	1,1-Dichloroethane	Paint and varnish remover, metal degreaser, ore flotation	$C_2C1_2H_4$
7	1,1-Dichloroethene	Paint and varnish remover, metal degreaser	C ₂ C1 ₂ H ₂
8	1,1,1-Trichloroethane	Solvent	C ₂ Cl ₃ H ₃
9	Toluene	Gasoline component, solvent thinner, adhesive solvent	C ₇ H ₈
10	1,2-Dichloroethane	Paint and varnish remover, metal degreaser, fumigant	$C_{2}C_{12}H_{4}$

David Reckilow

Rank	Chemical	Use	Chemical Formula
11	Benzene	Component of gasoline, used in chemical synthesis	C_6H_6
12	Ethylbenzene	Used in styrene manufacturing, solvent, asphalt construction	C_8H_{10}
13	Phenol	Disinfectant, pharmaceutical aid	C ₆ H ₅ OH
14	Chlorobenzene	Used in chemical synthesis	C ₆ H ₅ Cl
15	Vinyl chloride	Refrigerant, used in plastics industry	C ₂ ClH ₃
16	Carbon tetrachloride	Dry cleaning, metal degreasing, veterinary medicine	CCl ₄
17	Bis(2- ethylhexyl)phthalate	Used in vacuum pumps	$C_{24}H_{38}O_4$
18	Naphthalene	Used in manufacturing mothballs and motor fuel, component of coal tar	$C_{10}H_8$
19	1,1,2-Trichloroethane	Solvent	C ₂ Cl ₃ H ₃
20	Chloroethane	Refrigerant, solvent, used to produce tetraethyl lead	C ₂ ClH ₅

How can we use our knowledge of physical & chemical properties?

Table 1-2. Properties of Selected Chlorinated Aliphatic Hydrocarbons*

Chemical	Vapor Pressure (mmHg)	Henry's Constant (atm-m³/mole)	Water Solubility (mg/L)	Chemical Half-life (Years)
Carbon tetrachloride	90	0.0294	785	16–41
Chloroform	160	0.0040	8,200	742-3,000
Tetrachloroethene	14	0.0268	150	$3.8 \times 10^8 - 9.9 \times 10^8$
Trichloroethene	60	0.0117	1,100	$4.9 \times 10^5 - 1.3 \times 10^6$
Vinyl chloride	2,660	0.0224	2,700	>10

From Barbee, 1994.

From: Mihelcic, 1999

^{*}In later chapters, readers will learn about how these properties are used in evaluating and solving environmental problems.

Information Sources

Field	Journal	Publisher
Environmental quality	Environmental Science	American Chemical Society
	and Technology	
	Water Resources	American Geophysical Union
	Research	
	Water, Air and Soil	Kluwer Academic
	Pollution	Publications
Water treatment	Journal of the American	American Water Works
	Water Works Association	Association
	Aqua	International Water Assn.
	Journal of the	American Society of Civil
	Environmental	Engineers
	Engineering Division	
Wastewater treatment	Water Environment	Water Environment
	Research	Federation
	Journal of the	American Society of Civil
	Environmental	Engineers
	Engineering Division	
Solid waste	BioCycle	J. G. Press, Inc.
Hazardous waste	Hazardous Waste and	Mary Ann Liebert, Inc.
	Hazardous Materials	
	Ground Water	Ground Water Publications, Inc.
Air pollution and control	Journal of the Air and	Air and Waste Management
	Waste Management	Association
	Association	
General	Chemical and	American Chemical Society
	Engineering News	
	Civil Engineering	American Society of Civil
		Engineers

- General Environmental Principles
 - Course text & supplementary references
- Water & Wastewater Treatment
 - Hammer & Hammer (or CEE 371 text)

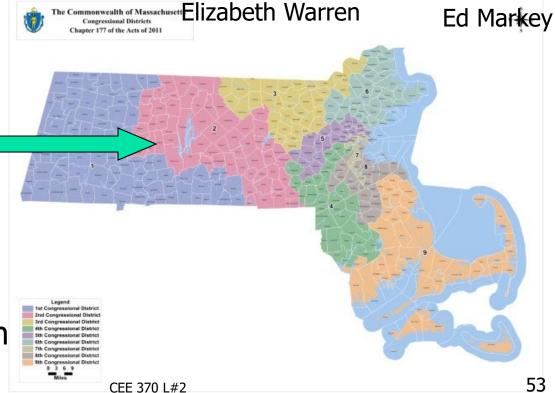
Government Sources

Source	Telephone Number	Address
Center for Environmental Research Information (CERI)	(513)569-7562	ORD Publications P.O. Box 19962 Cincinnati, OH 45219-0962
Superintendent of Documents	(202) 783-3238	Superintendent of Documents Government Printing Office Washington, DC 20402
RCRA Docket Information Center (RIC)	(800) 424-9346	RCRA Docket Information Center (RIC) Office of Solid Waste (OS- 305) U.S. Environmental Protection Agency 401 M Street, S.W. Washington, DC 20460
National Technical Information Service (NTIS)	(703) 487-4650	National Technical Information Service U.S. Department of Commerce Springfield, VA 22161 Washington, DC

David Reckhow CEE 370 L#1 51

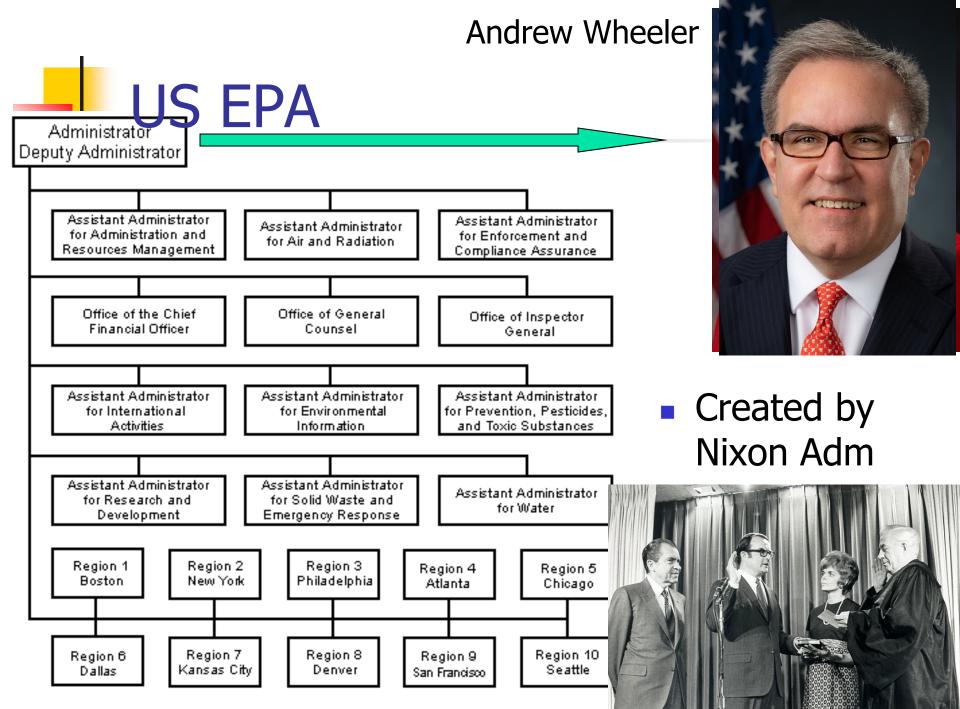
Laws and Regulations

- Laws: passed by a majority of both legislative houses and signed by the President
- Regulations: established by executive branch (USEPA) in response to laws
 - propose in Federal Register
 - public comment and modification
 - promulgation: into Code of Federal Regulations (CFR Part 40)

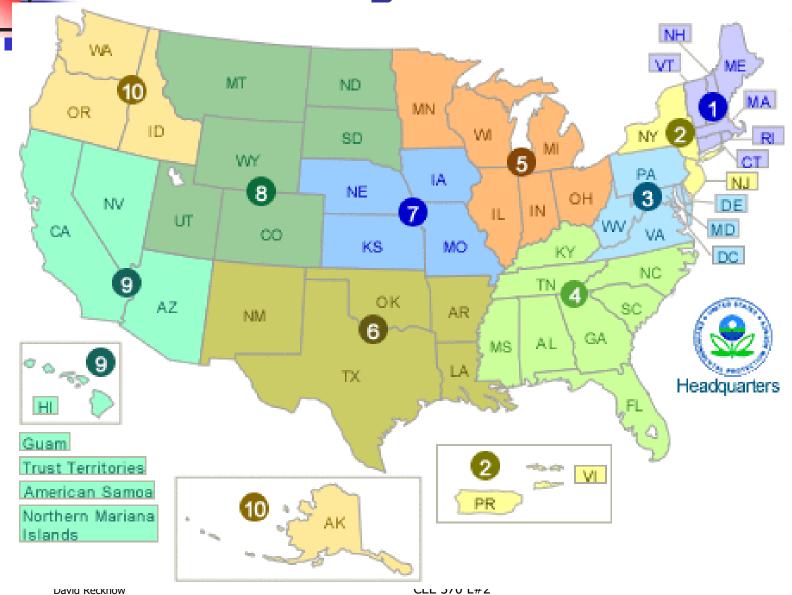

Our Delegation

- House
 - James McGovern

1972: Federal Water Pollution Control Act


An "act" of Congress = a law

- PL 92-500 subsequently amended and now called the <u>Clean Water Act</u>
 - established water quality goals "fishable & swimmable" and timetable
 - established National Pollution Discharge Elimination System (NPDES)
 - construction grants for WW treatment
- Eventually required secondary treatment (30/30)
 - 30 mg/L BOD₅
 - 30 mg/L TSS



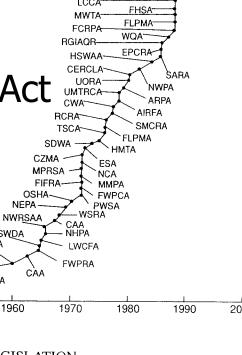
Laws: where to find them

- Daily
 - Federal Register
 - Back to 1994: on-line
 - http://www.gpoaccess.gov/fr/index.html
 - Pre 1994: see Gov Docs in DuBois
- Annual summary (July)
 - Code of Federal Regulations (CFR)
 - Back to 1996/7: on-line
 - http://www.gpoaccess.gov/cfr/index.html
 - Pre 1996/7: see Gov Docs in DuBois

USEPA Regions

Legislative History

- 1899: Rivers and Harbors Act
 - Prohibited disposal of solid objects in navigable waters
- 1948: Water Pollution Control Act
 - first national water quality legislation


 1970: National Environmental Policy Act (NEPA)

1910

1920

required and Environmental Impact
 Statement (EIS) for all federally-funded

projects

NAGPRA-PPA

NAWCA

NWPA

ODBA;SPA

UMTRAAA FIFRA

WRDA

1950

YEARS

FDCA

1940

1930

Legislative History

- 1970: USEPA formed
- 1972: Federal Water Pollution Control Act
 - PL 92-500 subsequently amended and now called the Clean Water Act
 - established water quality goals "fishable & swimable" and timetable
 - established National Pollution Discharge Elimination System (NPDES)
 - construction grants for WW treatment
 - Required industry-specific WW treatment technology
 - BPT: best practicable technology by 1977
 - BAT: best available technology by 1983

Legislative History (cont.)

- 1970: Clean Air Act
 - national air quality standards
 - amended several times since ('77 '90)
- 1974: Safe Drinking Water Act
 - set national drinking water standards
 - amended may times since
- 1976: Toxic Substances Control Act (TSCA)
 - regulate new hazardous chemicals (e.g. PCBs)

Legislative History (cont.)

- 1976: Resource Conservation and Recovery Act (RCRA)
 - protect air, water and land from solid and hazardous wastes
 - defines hazardous wastes
- 1977: Clean Water Act Amendments
 - Best conventional pollutant technology (BCT)
 - Secondary treatment: 30 mg/L BOD₅
 30 mg/L TSS
 - Priority Pollutants (127 toxic compounds)
- 1980: Comprehensive Environmental Response, Compensation and Liabilities Act (CERCLA or Superfund)
 - established fund and mechanisms for cleaning existing hazardous waste sites

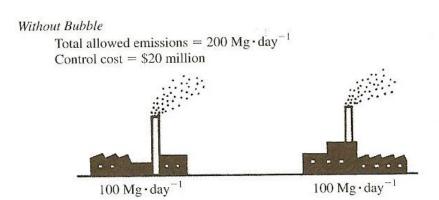
Regulatory Methods

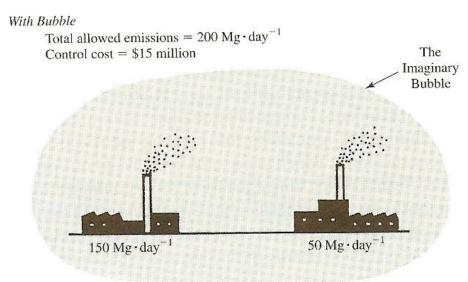
Environmental Quality-Based Standards

- cannot degrade environment beyond a certain level
- dependent on immediate environment
- more flexible

Effluent-Based Standards

- cannot discharge above a certain level of pollutant
- independent of immediate environment
- easier to establish and monitor




"Controlled Trading"

Bubble Policy

"Environmental rules now regulate each of the different processes in a plant. With this new policy we will draw an **imaginary bubble** around the whole plant and tell the company that it can find the most efficient way of controlling the plant's emissions as a whole. If it costs a dollar to control a pound of particulate pollution from one machine and fifty cents from another, the plant manager will quite reasonably choose to control fewer \$1 pounds and more 50 cent pounds. If the plant engineer can find a new way of reducing particulate emissions from a third machine for 30 cents a pound, he will remove as many of these pounds as he can in preference to either the 50 cent or one dollar pounds. As long as no more particulates escape from the overall bubble than before, the company's engineers can continue to innovate."

Douglas Costle, EPA Administrator, 1979

From: Davis & Masten, 2004

Controlling Air Pollution in Cities

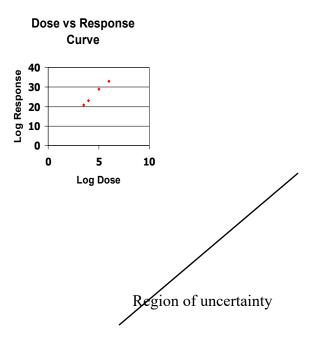
Source	Pollutants	Methods of Control
Industries	Volatile organics	Require reduced emissions
	Volatile chlorofluorocarbons	Require reduced emissions
	Particulate inorganics	Require reduced emissions
Automobiles	Hydrocarbons	Improved discharge nozzles at filling stations, improved ventilation within the gasoline tank
	Products of incomplete combustion	Improved combustion by requiring improved combustion efficiency (auto manufacturer), regular engine maintenance by requiring vehicle emission testing, requiring gasoline stations to provide only oxygenated fuels.
	Chlorofluorocarbons from air conditioners	Require the redesign of the air conditioner so that future automobiles can use other refrigerants.

Table 2.2 in Ray (pg 18)

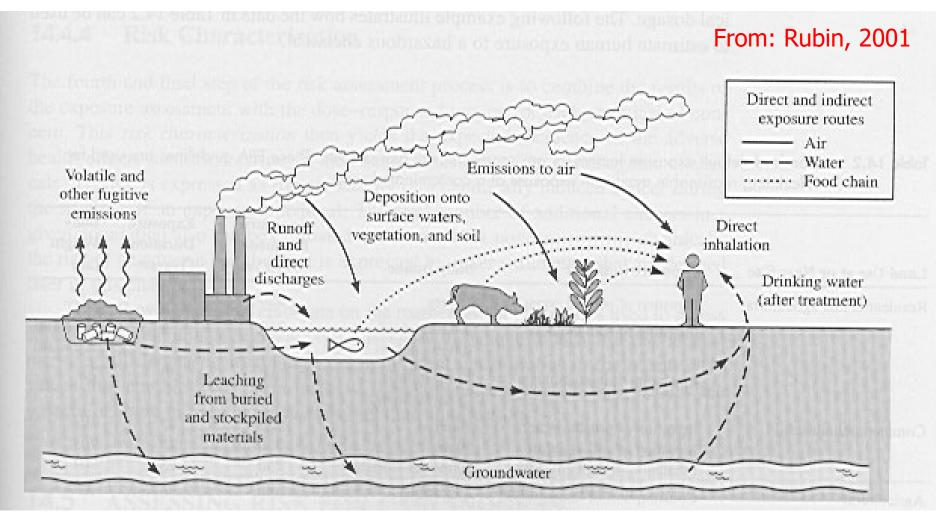
64

Basis for Setting Standards

- Experimentation
 - animal testing, human exposure
- Attainability
 - economic & technical feasibility
- Established practice
- Risk Assessment


Definitions

- Risk: the probability of occurrence of adverse health effects in humans
- Risk Assessment: the process of characterizing the nature and probability of adverse health effects of human exposure to environmental hazards
- Risk Management: the process of evaluating and selecting among alternative regulatory actions


Four steps in a Risk Assessment

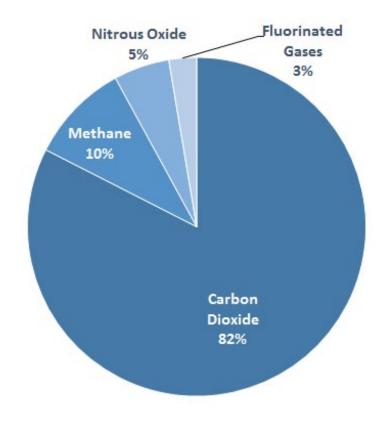
- Hazard Identification
 - what is it?
- Dose Response
 - see graph
- Human Exposure
 - actual doses and routes
- Risk Characterization

Routes of exposure

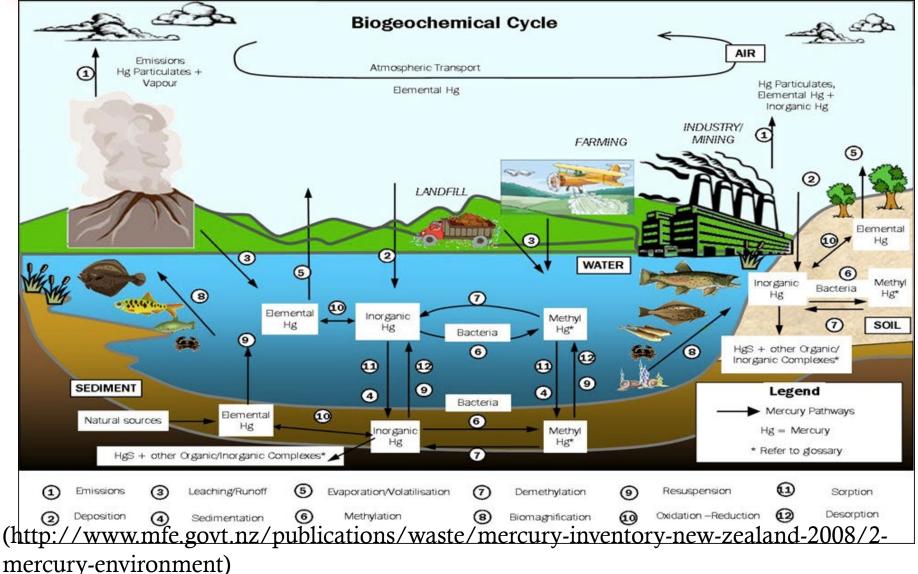
Comparative Risks

All increase chance of death in any year by 0.000001

Smoking 1.4 cigarettes	Cancer, heart disease
Spending 1 hr. in a coal mine	Black lung disease
Living 2 days in NYC or Boston	Air pollution
Living 2 months in Denver	Cancer caused by cosmic radiation
One chest X-ray	Cancer caused by radiation
Eating 40 tbs. of peanut butter	Liver cancer caused by Aflatoxin B
Drinking 30 12-oz. cans of diet soda	Cancer caused by saccharin
Living 150 yrs. within 20 miles of a nuclear power plant	Cancer caused by radiation


To next lecture

- Reading for next class
 - Mihelcic & Zimmerman, Chapter 2



Main Umbrellas - Air

- Air pollution
 - Acid rain
 - Greenhouse gases
 - CO
 - Particulate matter
 - O₃ at the ground level
 - Pb
 - Nitrogen oxides
 - Sulfur oxides
- Indoor air quality
 - CO
 - Radon
 - Mold and moisture

Cycling of Mercury

Tracer-Dilution Method (Instantaneous)

A measure of the downstream concentration of a tracer (known volume and concentration) discharged/injected *instantaneously* (sudden/slug) upstream over time until the concentration reaches the background level. 13 Calculating the discharge from the slug injection method involves integration,

Fracer concentration (C)

