Updated: 5 September 2019

Print version

CEE 370 Environmental Engineering Principles

Lecture #1
Introduction I

Reading: Chapter 1 in Mihelcic & Zimmerman

David Reckhow

CEE 370 L#1

Introduction to CEE 370

- Syllabus
- Book (Mihelcic & Zimmerman, 2nd edition)
- Website: http://www.ecs.umass.edu/cee/reckhow/courses/370/
 - Will also make some use of: Moodle, Gradescope and Piazza
- Labs: 5 in total
 - Streamflow is first
 - Location: Mill River on west edge of campus (adjacent to WET Center)
 - Teaching Assistants:
 - Soon-Mi Kim (soonmi@umass.edu), Monday & Tuesday labs
 - Savannah Wunderlich (swunderlich@umass.edu), Wednesday & Thursday labs

370 Lab

- This is our assigned lab room (Marston 24) as of this morning
- We may use an alternative lab room in Goessmann for labs #2-5

David Reckhow

Lab #1 – measuring stream flow

- Measure volumetric flow rate (Q) and mean velocity (ν) of a small stream
- How to do it?
 - Floating markers
 - Current meters
 - · Chemical tracer dilution

Electromagnetic Current Meter Method

• Hach meter: Based on stream velocity at a specific point (depth and width) for a specified time frame (in seconds).

$$\begin{aligned} Q_{total} &= (A_1 \times v_1) + (A_2 \times v_2) + (A_3 \times v_3) + \dots + (A_n \times v_n) \\ &= Q_1 + Q_2 + Q_3 + \dots + Q_n \end{aligned}$$

Mill River Field Site

- Teams of 3
- Use tape measure to define cross sections
- Metal rod supports meter and sensor at the right depth
- Need appropriate footwear

David A. Reckhow

CEE 370 Lab #1

7

Lab #1, Stream flow

- Before:
 - Attend information sessions held during normal lab periods
 - Make groups of 3-4.
 - Read and understand the lab session handout for next week's lab exercise for all three methods.
- Day of:
 - Expect to step into the stream (knee-depth at most) so wear appropriate clothing (flip-flops, shorts).
 - Bring a notebook to record your data and take notes.
 - Leave on time to reach WET Center by 2:30 PM
 - If you don't know the directions and/or need a ride, talk to your TA.
- Write-up
 - Prepare a write up (1 per group) as per technical report handout and the lab handout (last couple of pages)
 - Turn in your write-up as directed by TAs (1-2 weeks after lab)

How to dispose of Coke?

- To minimize environmental & human impact, I should
 - A. Pour it into the shrubs in front of Marston Hall during dry weather
 - B. Wait until there's a heavy rain and then pour it into the shrubs
 - C. Pour it down the sink
 - D. Pour it in the toilet
 - E. Throw the entire can's contents into the trash

CEE 370 L#1 David Reckhow

What's in it?

- John Stith Pemberton's original formulation
 - Cocoa leaves (37 g/L; including ~ 36 mg/L cocaine)
 - Cola nut (with Caffeine)
- Current formulation largely unknown except:
 - Monosaccharides:
 - 84 g/L fructose
 - 68 g/L glucose

- Caffeine: 89 mg/L (caffeine citrate)
- Phosphoric acid (172 mg-P/L)
- pH 2.3

David Reckhow

CEE 370 L#1

Nutrition Facts Valeur nutritive

Per 1 bottle (500 mL) pour 1 bouteille (500mL)

Amount	% Daily		
Teneur	% valeur quoti	dien	ne
Calories / Calories 200			
Fat / Lipides 0 g		0	%
Sodium / Sodium 40 mg		2	%
Carbohydrate / Glucides 55 g		18	%
Sugars / S	Sucres 55 g		
Protein / Protéines 0 g			

Not a significant source of other nutrients. Source négligeable d'autres éléments nutritifs.

Dave Reckhow 5 Lecture #1

E: The trash can solution

- $\bullet \ UMass \ of fice \ of \ waste \ management \ (\underline{https://www.umass.edu/wastemanagement/})$
 - Integrated solid waste management approach
- The path
 - OWM trash packer truck to WRTF => transfer trailers to Holyoke transfer station => via rail to Southbridge MA landfill

Landfills and groundwater

• They all leak to some extent, especially unlined landfills

Next

• To next lecture

- Reading for next class:
 - M&Z: Chapter 1
 - Hardin's "Tragedy of the Commons" Science, 13 Dec 1968 (pg 1243)

Also on website

David Reckhow CEE 370 L#1