CEE 370 Fall 2019

Study Guide for Mid-term Exam

Approximate Relative importance: Homeworks>Slides>Book Mid-term exam covers lectures #1-17; topics below:

Topics	Book	Lecture# with advice on most important slides/concepts1	Date	Home- work
 I. Introduction Environmental Engineering Overview Environmental Legislation & Regulation 	Chapter 1	2 Slides 6, 52, 54 58-62	6 Sept	
II. Environmental Chemistry Basics: Bonding & definitions		$\frac{3}{36,43,44}$ Slides $\frac{3}{36,43,44}$	11 Sept	
Units of concentrationSolids analysis		4 Slides: 9-11,23-28	13 Sept	<u>#1</u>
Reactions & stoichiometryEquilibriumOxygen demand	Chapter	Slides: 7, 13-52; no need to memorize constants or concentrations	16 Sept	<u>#2</u>
 Kinetics Water, soil & air chemistry Ionic strength	2&3	6 Slides 2-5, 6-10, 14-29	18 Sept	
ThermodynamicsAcids & BasesEquilibria, calculations		7 Slides 2-21, 25-29, 32 Chemical names in slides 25, 26, but don't memorize the constants	20 Sept	#3
 Equilibria Organic Nomenclature		8 Slides 3-5, 10-15, 20-36	23 Sept	
III. Physical Processes • Mass balances; reactors	Chapter	9 Slides: 9-33, 37-47	25 Sept	<u>#4</u>
Energy and Energy balances	4	<u>10</u> Slides 6-10, 17-18	27 Sept	
Reactor Models		11 Slides 4-24	30 Sept	

¹ I've listed slides by number within each lecture as they are currently (Oct 21) posted on the CEE 370 website (http://www.ecs.umass.edu/cee/reckhow/courses/370/sched.htm). Specifics of example problems are not too important, but the problems are useful in learning to apply the important concepts. This is my best general assessment, but it isn't perfect. There may be a few questions on topics not listed among the most important slides.

IV. Biological Principles Basic principles		Slides 2-11 (no need to know exact structures of these organic molecules)	2 Oct	
 Biochemical pathways Energy transfer and yields Enzymes 		Slides: 2-9, 11-14, 20, 23-27, 29 (but no need to know details of biochemical pathways or half-reactions and related constants)	4 Oct	
 Genetics Transcription	Chapter 5	14 Slides 2-4, 6, 9-17, 30-32, 47	9 Oct	
Microorganisms, organelles		Slides: all (minus details of algal types; and species names)	7 Oct	
Water quantitiesNutrient cycles		16 Slides 2-9 don't memorize fluxes or quantities, 11-21, 26-29, 35-36, 44-53	7 Oct	
Growth models		17 Slides: 3-31	9 Oct	

Instructions provided with Exam

Closed Book, one sheet of notes allowed

Special information provided with Exam

Conversions

7.48 gallon = 1.0 ft³ 1 gal = 3.7854x10⁻³ m³ 1 MGD = 694 gal/min = 1.547 ft³/s = 43.8 L/s 1 ft³/s = 449 gal/min g = 32 ft/s² W= γ = 62.4 lb/ft³ = 9.8 N/L 1 hp = 550 ft-lbs/s = 0.75 kW 1 mile = 5280 feet 1 ft = 0.3048 m 1 watt = 1 N-m/s 1 psi pressure = 2.3 vertical feet of water (head) At 60 °F, ν = 1.217 x 10⁻⁵ ft²/s

Selected Chemical Constants

Element	Symbol	Atomic #	Atomic Wt.	Valence	Electronegativity		
Aluminum	Al	13	26.98	3	1.47		
Boron	В	5	10.81	3	2.01		
Calcium	Ca	20	40.08	2	1.04		
Carbon	С	6	12.01	2,4	2.50		
Chlorine	C1	17	35.453	1,3,5,7	2.83		
Chromium	Cr	24	52.00	many	1.56		
Helium	Не	2	4.00	0			
Holmiuum	Но	67	164.93	3	1.10		
Hydrogen	Н	1	1.01	1	2.20		
Magnesium	Mg	12	24.31	2	1.23		
Manganese	Mn	25	54.94	2,3,4,6,7	1.60		
Nitrogen	N	7	14.01	many	3.07		
Oxygen	O	8	16.00	2	3.50		
Potassium	K	19	39.10	1	0.91		
Sodium	Na	11	22.99	1	1.01		
Sulfur	S	16	32.06	2,4,6	2.44		

Selected Acidity Constants (Aqueous Solution, 25° C, I = 0)

NAME	FORMULA	pKa
Hydrochloric acid	$HCl = H^+ + Cl^-$	-3
Sulfuric acid	$H_2SO_4 = H^+ + HSO_4^-$	-3

Nitric acid	$HNO_3 = H^+ + NO_3^-$	-0
Bisulfate ion	$HSO_4^- = H^+ + SO_4^{-2}$	2
Phosphoric acid	$H_3PO_4 = H^+ + H_2PO_4^-$	2.15
Hydrofluoric acid	$HF = H^+ + F^-$	3.2
Nitrous acid	$HNO_2 = H^+ + NO_2^-$	4.5
Acetic acid	$CH_3COOH = H^+ + CH_3COO^-$	4.75
Propionic acid	$C_2H_5COOH = H^+ + C_2H_5COO^-$	4.87
Carbonic acid	$H_2CO_3 = H^+ + HCO_3^-$	6.35
Hydrogen sulfide	$H_2S = H^+ + HS^-$	7.02
Dihydrogen phosphate	$H_2PO_4^- = H^+ + HPO_4^{-2}$	7.2
Hypochlorous acid	$HOCl = H^+ + OCl^-$	7.5
Ammonium ion	$NH_4^+ = H^+ + NH_3$	9.24
Hydrocyanic acid	$HCN = H^+ + CN^-$	9.3
Phenol	$C_6H_5OH = H^+ + C_6H_5O^-$	9.9
Bicarbonate ion	$HCO_3^- = H^+ + CO_3^{-2}$	10.33
Monohydrogen phosphate	$HPO_4^{-2} = H^+ + PO_4^{-3}$	12.3
Bisulfide ion	$HS^- = H^+ + S^{-2}$	13.9

PHYSICAL AND CHEMICAL CONSTANTS

Avogadro`s number	$N = 6.022 \times 10^{23} \text{ mol}^{-1}$
Elementary charge	$e = 1.602 \times 10^{-19} \text{ C}$
Gas constant	$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
	$= 1.987 \text{ cal mol}^{-1} \text{ K}^{-1}$
	$= 0.08205 \text{ L atm mol}^{-1} \text{ K}^{-1}$
Planck's constant	$h = 6.626 \times 10^{-34} \mathrm{J s}$
Boltzmann's constant	$\mathbf{k} = 1.381 \times 10^{-23} \mathrm{J \ K^{-1}}$
Faraday's constant	$F = 9.649 \times 10^4 \text{ C mol}^{-1}$
Speed of light	$c = 2.998 \times 10^8 \text{ m/s}^{-1}$
Vacuum permittivity	$\varepsilon_0 = 8.854 \times 10^{-12} \mathrm{J}^{-1} \mathrm{C}^2 \mathrm{m}^{-1}$
Earth's gravitation	$g = 9.806 \text{ m/s}^{-2}$

CONVERSION FACTORS

1 cal	= 4.184 joules (J)
1 eV/molecule	$= 96.485 \text{ kJ mol}^{-1}$
	$= 23.061 \text{ kcal mol}^{-1}$
1 wave number (cm ⁻¹)	$= 1.1970 \times 10^{-2} \text{ kJ mol}^{-1}$
1 erg	$= 10^{-10} \text{ kJ}$
1 atm	$= 1.01325 \times 10^5 \text{ Pa}$
1 Å	$= 10^{-10} \text{ m}$
1 L	$= 10^{-3} \text{ m}^3$

PROPERTIES OF WATER

T(°C)	ρ . Density $(kg \cdot m^{-3})$	μ Viscosity $(kg \cdot m^{-1} \cdot s^{-1})$	σ, Surface Tension against Air (J·m ⁻²)	$ \begin{array}{c} \varepsilon \\ \text{Dielectric} \\ \text{Constant} \\ (C \cdot V^{-1} \cdot m^{-1}) \end{array} $	pK_{w} . Ionization Constant (mol ² · L ⁻²)
()	999,868	0.001787	0.0756	88.28	14.9435
5	999,992	0.001519	0.0749	86.3	14.7338
10	999.726	0.001307	0.07422	84.4	14.5346
15	999.125	0.001139	0.07349	82.5	14.3463
20	998,228	0.001002	0.07275	80.7	14.1669
25	997.069	0.0008904	0.07197	78.85	13.9965
30)	995.671	0.0007975	0.07118	77.1	13.8330

SI PREFIXES

Multiplication Factor	Prefix	Symbol	Multiplication Factor	Prefix	Symbol
1012	tera	Т	10-2	centi	c
10^{9}	giga	G	10^{-3}	milli	m
106	mega	M	10 6	micro	μ
103	kilo	k	109	nano	n
10^{2}	hecto	h	10^{-12}	pico	р
10^{1}	deka	da	10^{-15}	femto	f
10^{-1}	deci	d	10 - 18	atto	a