Study Guide for Mid-term Exam

Approximate Relative importance: Homeworks>Slides>Book Mid-term exam covers lectures #1-17; topics below:

Topics	Book	Lecture# with advice on most important slides/concepts ¹	Date	Home- work
I. IntroductionChapter• Environmental Engineering Overview, legislationChapter 1• Mass Balances1		<u>1</u> Know terms, mass balances Slides 10-17	9 Sept	
Environmental Legislation & Regulation		<u>2</u> Slides 6, 37, 39, 47-50, 53-55	11 Sept	
 II. Environmental Chemistry Basics: Bonding & definitions 		3 Slides 2-12	14 Sept	
 Units of concentration Reactions & stoichiometry Equilibrium 		4 Slides: all	16 Sept	<u>#1</u>
KineticsWater, soil & air chemistryIonic strength	Chapter 2&3	5 Slides: all; no need to memorize equations on slide 17	18 Sept	<u>#2</u>
ThermodynamicsAcids & Bases		<u>6</u> Slides 2-5, 6-10, 14-29	21 Sept	
• Equilibria, calculations		7 Chemical names in slides 3, 22, 25, 26, but don't memorize the constants, slides 4-21, 27-32.	23 Sept	<u>#3</u>
Organic Nomenclature		8 Slides 2-11, 16-33	25 Sept	
III. Physical Processes		<u>9</u> Slides: all	28 Sept	<u>#4</u>
Mass balances; reactorsEnergy and Energy balances	Chapter 4	<u>10</u> Slides 4, 11-15	30 Sept	
Microbiology & Biochemical pathways		<u>11</u> Slides 2-24 (minus details in #15)	2 Oct	

¹ I've listed slides by number within each lecture as they are currently (Oct 27) posted on the CEE 370 website (<u>http://www.ecs.umass.edu/cee/reckhow/courses/370/sched.htm</u>). I generally don't list example problems, because the specifics of these aren't too important. They are useful, however, in learning to apply the important concepts. This is my best general assessment, but it isn't perfect. There may be a few questions on topics not listed among the most important slides.

IV. Biological PrinciplesBasic principles		<u>12</u> Slides 2-12 (no need to know exact structures of these organic molecules)	5 Oct	
Biochemical pathwaysEnergy transfer and yieldsEnzymes		<u>13</u> Slides: all (but no need to know details of biochemical pathways or half- reactions and related constants)	7 Oct	
GeneticsTranscription	Chapter	<u>14</u> Slides 2-4, 6, 9-17, 30-32, 47	9 Oct	
Microorganisms, organelles	5	<u>15</u> Slides: all (minus details of algal types; and species names)	13 Oct	
Water quantitiesNutrient cycles		<u>16</u> Slides 2-9 don't memorize fluxes or quantities, 11-25, 27, 29-49 (don't memorize values in slide 34)	14 Oct	
Growth models		17 Slides: all	16 Oct	<u>#5</u>

Instructions provided with Exam

Closed Book, one sheet of notes allowed

Special information provided with Exam

 $\begin{array}{l} \underline{\text{Conversions}} \\ \hline 7.48 \text{ gallon} &= 1.0 \text{ ft}^3 \\ 1 \text{ gal} &= 3.7854 \text{ x} 10^{-3} \text{ m}^3 \\ 1 \text{ MGD} &= 694 \text{ gal/min} \\ 1 \text{ mGD} &= 694 \text{ gal/min} \\ g &= 32 \text{ ft/s}^2 \\ W &= \gamma = 62.4 \text{ lb/ft}^3 \\ = 9.8 \text{ N/L} \\ 1 \text{ hp} &= 550 \text{ ft-lbs/s} \\ = 0.75 \text{ kW} \\ 1 \text{ mile} \\ = 5280 \text{ feet} \\ 1 \text{ ft} \\ = 0.3048 \text{ m} \\ 1 \text{ watt} \\ = 1 \text{ N-m/s} \\ 1 \text{ psi pressure} \\ = 2.3 \text{ vertical feet of water (head)} \\ \text{At } 60 \text{ }^{\circ}\text{F}, \text{ v} \\ = 1.217 \text{ x} 10^{-5} \text{ ft}^2/\text{s} \\ \end{array}$

Element	Symbol	Atomic #	Atomic Wt.	Valence	Electronegativity	
Aluminum	Al	13	26.98	3	1.47	
Boron	В	5	10.81	3	2.01	
Calcium	Ca	20	40.08	2	1.04	
Carbon	С	6	12.01	2,4	2.50	
Chlorine	Cl	17	35.453	1,3,5,7	2.83	
Chromium	Cr	24	52.00	many	1.56	
Helium	He	2	4.00	0		
Holmiuum	Но	67	164.93	3	1.10	
Hydrogen	Н	1	1.01	1	2.20	
Magnesium	Mg	12	24.31	2	1.23	
Manganese	Mn	25	54.94	2,3,4,6,7	1.60	
Nitrogen	N	7	14.01	many	3.07	
Oxygen	0	8	16.00	2	3.50	
Potassium	K	19	39.10	1	0.91	
Sodium	Na	11	22.99	1	1.01	
Sulfur	S	16	32.06	2,4,6	2.44	

Selected Chemical Constants

NAME	FORMULA	pK _a
Hydrochloric acid	$HCl = H^+ + Cl^-$	-3
Sulfuric acid	$H_2SO_4 = H^+ + HSO_4^-$	-3

Nitric acid	$HNO_3 = H^+ + NO_3^-$	-0
Bisulfate ion	$HSO_4^- = H^+ + SO_4^{-2}$	2
Phosphoric acid	$H_3PO_4 = H^+ + H_2PO_4^-$	2.15
Hydrofluoric acid	$HF = H^+ + F^-$	3.2
Nitrous acid	$HNO_2 = H^+ + NO_2^-$	4.5
Acetic acid	$CH_3COOH = H^+ + CH_3COO^-$	4.75
Propionic acid	$C_2H_5COOH = H^+ + C_2H_5COO^-$	4.87
Carbonic acid	$H_2CO_3 = H^+ + HCO_3^-$	6.35
Hydrogen sulfide	$H_2S = H^+ + HS^-$	7.02
Dihydrogen phosphate	$H_2PO_4^- = H^+ + HPO_4^{-2}$	7.2
Hypochlorous acid	$HOCl = H^+ + OCl^-$	7.5
Ammonium ion	$\mathrm{NH_4^+} = \mathrm{H^+} + \mathrm{NH_3}$	9.24
Hydrocyanic acid	$HCN = H^+ + CN^-$	9.3
Phenol	$C_{6}H_{5}OH = H^{+} + C_{6}H_{5}O^{-}$	9.9
Bicarbonate ion	$HCO_3^- = H^+ + CO_3^{-2}$	10.33
Monohydrogen phosphate	$HPO_4^{-2} = H^+ + PO_4^{-3}$	12.3
Bisulfide ion	$HS^{-} = H^{+} + S^{-2}$	13.9

PHYSICAL AND CHEMICAL CONSTANTS

Avogadro's number	$N = 6.022 \times 10^{23} \text{ mol}^{-1}$
Elementary charge	$e = 1.602 \times 10^{-19} \text{ C}$
Gas constant	$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
	= 1.987 cal mol ⁻¹ K ⁻¹
	$= 0.08205 \text{ L} \text{ atm mol}^{-1} \text{ K}^{-1}$
Planck's constant	$h = 6.626 \times 10^{-34} \text{ J s}$
Boltzmann's constant	$\mathbf{k} = 1.381 \times 10^{-23} \text{ J K}^{-1}$
Faraday's constant	$F = 9.649 \times 10^4 \text{ C mol}^{-1}$
Speed of light	$c = 2.998 \times 10^8 \text{ m s}^{-1}$
Vacuum permittivity	$\varepsilon_0 = 8.854 \times 10^{-12} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$
Earth's gravitation	g = 9.806 m s ⁻²

CONVERSION FACTORS

1 cal	= 4.184 joules (J)
1 eV/molecule	$= 96.485 \text{ kJ mol}^{-1}$
	$= 23.061 \text{ kcal mol}^{-1}$
1 wave number (cm ⁻¹)	$= 1.1970 \times 10^{-2} \text{ kJ mol}^{-1}$
1 erg	$= 10^{-10} \text{ kJ}$
1 atm	$= 1.01325 \times 10^5$ Pa
1 Â	$= 10^{-10} \text{ m}$
1 L	$= 10^{-3} \text{ m}^3$

PROPERTIES OF WATER

Density (kg · m ⁻³)	Viscosity $(kg \cdot m^{-1} \cdot s^{-1})$	Surface Tension against Air (J · m ⁻²)	Dielectric Constant $(C \cdot V^{-1} \cdot m^{-1})$	Ionization Constant (mol ² • L ⁻²)
999.868	0.001787	0.0756	88.28	14.9435
999.992	0.001519	0.0749	86.3	14.7338
999.726	0.001307	0.07422	84.4	14.5346
999.125	0.001139	0.07349	82.5	14.3463
998.228	0.001002	0.07275	80.7	14.1669
997.069	0.0008904	0.07197	78.85	13.9965
995.671	0.0007975	0.07118	77.1	13.8330
((kg · m ⁻³) 999.868 999.992 999.726 999.125 998.228 997.069	(kg · m ⁻¹ · s ⁻¹) 999.868 0.001787 999.992 0.001519 999.726 0.001307 999.125 0.001139 998.228 0.001002 997.069 0.0008904	$\begin{array}{c} (kg \cdot m^{-3}) & (kg \cdot m^{-1} \cdot s^{-1}) & (J \cdot m^{-2}) \\ \hline 999.868 & 0.001787 & 0.0756 \\ 999.992 & 0.001519 & 0.0749 \\ 999.726 & 0.001307 & 0.07422 \\ 999.125 & 0.001139 & 0.07349 \\ 998.228 & 0.001002 & 0.07275 \\ 997.069 & 0.0008904 & 0.07197 \\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SI PREFIXES

Multiplication Factor	Prefix	Symbol	Multiplication Factor	Prefix	Symbol
1012	tera	Т	10-2	centi	с
109	giga	G	10 3	milli	m
10^{6}	mega	М	10 *	micro	μ
· 10 ³	kilo	k	10-2	nano	n
10 ²	hecto	h	10^{-12}	pico	р
10^{1}	deka	da	10^{-15}	femto	ŕ
10^{-1}	deci	đ	10-18	atto	а