Homework #1

1. A solution of sodium bicarbonate is prepared by adding 45.00 g of sodium bicarbonate to a 1.00 L volumetric flask and adding distilled water until it reaches the 1.00 L mark. What is the concentration of sodium bicarbonate in units of (a) milligrams per liter, (b) molarity, (c) normality, and (d) milligrams per liter as CaCO₃?

Given: 45.000 g of sodium bicarbonate in 1.00 L of water. Solution:

a. The resulting concentration of the solution is 45 g/L. Converting this to mg/L

 $(45 \text{ g/L})(1000 \text{ mg/g}) = 45,000 \text{ mg/L} = \frac{4.5 \text{ x } 10^4 \text{ mg/L}}{1000 \text{ mg/g}}$

b. To find the molarity, the molecular weight of NaHCO₃ must be found

Na = 22.99 x 1 = 22.99 H = 1.008 x 1 = 1.008 C = 12.01 x 1 = 12.01 3O = 16.00 x 3 = 48.00 $\Sigma = 84.01$ g/mol

Then, the molarity

(45 g/L)(1 mol/84 g) = 0.536 M = 0.54 M

c. The equivalent weight of NaHCO₃ is its GMW divided by the number of hydrogen ions transferred. In this case z = 1 because Na⁺ is replaced by 1 H. Thus normality (N) is z^*M , and in this case z = 1

(0.536 M)(1 N/M) = 0.536 M = 0.54 N

d. Change to units of mg/L as CaCO₃, using conversion (eq. 2-87 and lecture 4, slide 7).

 $50 \text{ mg/L as CaCO}_{3}$ $45,000 \text{ mg/L } *(------) = 26,785 \text{ mg/L } = \frac{2.7 \text{ x } 10^{4} \text{ mg/L as CaCO}_{3}}{84 \text{ mg/L as NaCO}_{3}}$

2. the following 5 chemical equations:

Solution:

a. $CaCl_2 + Na_2CO_3 = CaCO_3 + NaCl$

Elements	Reactants	Products
Ca	1	1
C1	2	1
Na	2	1
С	1	1
0	3	3

Note that we are short 1 Na, so multiply product NaCl by 2

Elements	Reactants	Products
Ca	1	1
Cl	2	2
Na	2	2
С	1	1
0	3	3

This yields the balanced equation:

 $CaCl_2 + Na_2CO_3 = CaCO_3 + 2 NaCl_3$

b.
$$C_6H_{12}O_6 + O_2 = CO_2 + H_2O_3$$

Elements	Reactants	Products
С	6	1
Н	12	2
0	8	3

Note that we are short 5 C, 10 H and 5 O. Multiply product CO₂ by 6 and H₂O by 6. This balances C and H on each side, and leaves a difference of 10 O. Multiply the reactant O₂ to balance equation:

$C_6H_{12}O_6 + 6 O_2 = 6 CO_2 + 6 H_2O$

<u>Elements</u>	<u>Reactants</u>	Products
С	6	6
Н	12	12
0	18	18

c.
$$NO_2 + H_2O = HNO_3 + NO$$

Elements	<u>Reactants</u>	Products
Ν	1	2
Н	2	1
0	3	4

Note that H is short 1, therefore multiply the product HNO_3 by 2. This causes N to be out of balance, and the reactant NO_2 should be multiplied by 3.

3 NO	$+ H_2O$	$= 2 \text{ HNO}_3$	+ NO
<u>J 110</u>	2 1120	211103	110

Elements	Reactants	Products
Ν	3	3
Н	2	2
0	7	7

d. $C_4H_{10} + O_2 = CO_2 + H_2O$

Elements	Reactants	Products
С	4	1
Н	10	2
0	2	3

Note that H is out of balance, but in order to keep the number of O even, we must multiply the product H_2O by 10. As a result, the reactant C_4H_{10} must be multiplied by 2.

$$2 C_4 H_{10} + O_2 = CO_2 + 10 H_2 O_2$$

Elements	Reactants	Products
С	8	1
Н	20	20
0	2	12

However, the reaction is still not balanced. CO₂ must be multiplied by 8 to maintain an equal number of C. As a result, O is left unbalanced. Multiply O₂ by 13.

$2 C_4 H_{10} + 13 O_2 = 8 CO_2 + 10 H_2 O_2$

Elements	Reactants	Products
С	8	8
Н	20	20
0	26	26

e. $Al(OH)_3 = Al^{3+} + OH^{-}$

E	lements	

Reactants

Products

Al	1	1
0	3	1
Н	3	1

Note that Al is in balance, however we are missing two OH groups. Multiply the product OH⁻ by 3.

$Al(OH)_3 = Al^{3+} + 3 OH^{-}$

Elements	Reactants	Products
Al	1	1
0	3	3
Н	3	3

3. You've just prepared a solution by dissolving 20 mg sodium sulfide (Na2S), and 30 mg potassium sulfate dihydrate (K2SO4•2H2O) in 1 Liter of distilled water.

- a) What is the molar concentration of sodium sulfide in this solution?
- b) What is the equivalent concentration of sodium sulfide in this solution?
- c) What is the molar concentration of potassium in this solution?
- d) What is the concentration of total sulfur in this solution in mg/L?
- e) What is the concentration of reduced sulfur (i.e., S(-II)) in this solution in mg/L?
- f) What is the theoretical TDS of this solution in mg/L?

Answers:

Assemble essential data:

	Atomic				
	Wt				
Na	22.99				
S	32.06				
K	39.1				
0	16				
Н	1.01				

Calculate molar quantities and percentages

	Amount Added					
GFW	mg		mMoles	%water	%Sulfur	%S(-II)
78.04 Na ₂ S		20	0.256279	0.00%	41.08%	41.08%
210.3K ₂ SO ₄ 2	2H ₂ O	30	0.142653	17.14%	15.24%	0.00%

a. Molar Concentration

GFW = 2* 22.99 + 32.06 = 78.04

$$Molarity = \frac{\frac{mass_{L}}{GFW}}{GFW} = \frac{\frac{0.020g_{L}}{78.04g/mole}}{78.04g/mole} = 0.000256 moles / L$$
or
$$\frac{0.26 \text{mM}}{0.26 \text{mM}}$$

b. Equivalent Concentration

Since z=2 for the compound (i.e., there are 2 positive charges Na⁺ and Na⁺, and 2 negative charges S⁻²), then GEW = GFW/2 = 39.02. This also makes the equivalent concentration twice the molar concentration, so:

Normality =
$$\frac{\frac{mass_{L}}{GEW}}{GEW} = \frac{\frac{0.020g_{L}}{39.02g/mole}}{39.02g/mole} = 0.000513N$$

or
0.51 meq/L

c. Molar Concentration of K

first determine the molar concentration of the potassium sulfate

$$GFW = 2*39.1 + 32.06 + 4*16 + 2*(16+2*1.10) = 210.3$$

$$Molarity = \frac{\frac{mass_{L}}{GFW}}{GFW} = \frac{\frac{0.030g_{L}}{210.3g/mole}}{210.3g/mole} = 0.000143 moles / L$$

or
0.143mM

Then translate this to a concentration of potassium alone

$$Molarity = \frac{0.000143moles - K_2SO_4 \bullet 2H_2O}{L} \left(\frac{2moles - K}{1mole - K_2SO_4 \bullet 2H_2O}\right) = 0.000285moles - K/L$$

or
0.29mM

d. Concentration of Total Sulfur

One approach is to determine total molar sulfur concentration and then convert to mg/L units.

$$Molarity = \frac{0.000256moles - Na_2S}{L} \left(\frac{1mole - S}{1mole - Na_2S}\right) + \frac{0.000143moles - K_2SO_4 \bullet 2H_2O}{L} \left(\frac{1mole - S}{1mole - K_2SO_4 \bullet 2H_2O}\right)$$

= 0.000399moles - S / L
$$Concentration = \frac{0.000399mole - S}{L} \left(\frac{32.06g - S}{mole - S}\right) = 0.0128g / L$$

= 12.8 mg/L

e. Concentration of Reduced Sulfur

The reduced sulfur is only the S in Na₂S. This is sulfur in its (-II) oxidation state.

$$Molarity = \frac{0.000256moles - Na_2S}{L} \left(\frac{1mole - S}{1mole - Na_2S}\right)$$
$$= 0.000256moles - S/L$$
$$Concentration = \frac{0.000256mole - S}{L} \left(\frac{32.06g - S}{mole - S}\right) = 0.0082g/L$$
$$= 8.2 \text{ mg/L}$$

f. What is the TDS

Determine the total mass of salts added, minus any water (i.e., water of crystallization).

$$TDS = (20mg - Na_2S) \left(1 - \frac{0g - H_2O}{78.04g - Na_2S} \right) + (30mg - K_2SO_4 \bullet 2H_2O) \left(1 - \frac{36.04g - H_2O}{210.3g - K_2SO_4 \bullet 2H_2O} \right)$$
$$TDS = 44.9 \text{ mg/L}$$

4. If 200 mg of HCl is added to water to achieve a final volume of 1.00 L, what is the final pH?

pH of HCl solution

Given: 200 mg of HCl in 1.00 L Solution:

a. Calculate molarity

b. Moles of H^+ on ionization

 $HCl \leftrightarrow H^+ + Cl^-$

so 1 mole HCl = 1 mole H^+

 $[H^+] = 5.476 \text{ x } 10^{-3} \text{ M}$

c. Using Eqn 2-38

 $pH = -\log(5.487 \times 10^{-3}) = 2.26$

5. What amount (mass, in mg) of NaOH (a strong base), would be required to neutralize the acid in previous problem?

From the problem above, we now know that 200 mg/L of HCl is 5.476 x $10^{-3}\,\rm M$

Since HCl has a single hydrogen ion it donates to water, and NaOH has a single hydroxide that can neutralize a single hydrogen ion, the stoichiometry of neutralization is 1:1

$$HCl + NaOH \rightarrow NaCl + H_2O$$

Therefore we need 5.476 x 10^{-3} M of NaOH

The GMW of NaOH is 22.99 + 16 + 1.008 = 40 g/M

So the amount of NaOH is 40x 5.476 x 10^{-3} M = 0.219 g

6. The concentration of a chemical degrades in water according to first-order kinetics. The degradation constant is 0.2 day⁻¹. If the initial concentration is 100.0 mg/L, how many days are required for the concentration to reach 0.14 mg/L? Also calculate the half-life (t1/2) for this decay reaction.

Given: 1^{st} order kinetics, rate of 0.2 d⁻¹, initial concentration = 100 mg/L. Solution:

a. Time to read 0.14 mg/L by 1st order kinetics

$$C = -kt$$

$$C_{o} = -kt$$

$$ln - - - = -(0.2)t$$

$$100$$

$$-6.57 = -0.2t$$

$$t = 32.85 \text{ or } 32.9 \text{ d}$$

b. Half Life

$$t_{\frac{1}{2}} = \frac{\ln 2}{K} = \frac{0.693}{0.2d^{-1}}$$

=3.5 d

7. Each mole of CaF₂(s) dissolved yields 1 mole of Ca²⁺ and 2 moles of F⁻ (fluoride). The solubility product of calcium fluoride (CaF₂) is 3x10⁻¹¹ at 25C. Could a fluoride concentration of 1.0 mg/L be obtained in water that contains 200 mg/L of calcium? Show your work.

Given: Solubility product of $CaF_2 = 3 \times 10^{-11}$, F = 1.0 mg/L and Ca = 200 mg/L Solution:

a. Convert Ca and F to moles/L

$$Ca = \frac{200 \text{ mg/L}}{(40.08 \text{ g/mole})(1000 \text{ mg/g})} = 4.99 \text{ x } 10^{-3} \text{ moles/L}$$

$$F = \frac{1.0 \text{ mg/L}}{(18.998 \text{ g/mole})(1000 \text{ mg/g})} = 5.26 \text{ x } 10^{-5} \text{ moles/L}$$

b. Calculate solubility of F with 200 mg/L of Ca in solution.

$$K_s = [Ca][F]^2$$

 $K_s = [4.99 \text{ x } 10^{-3}][F]^2 = 3.00 \text{ x } 10^{-11}$

$$[F] = (------)^{1/2} = 7.75 \times 10^{-5} \text{ moles/L}$$

4.99 x 10⁻³

c. Since 7.75 x 10^{-5} is greater than 5.26 x 10^{-5} , the 1.0 mg/L of F will be soluble.