Your Name:

CEE 370

Fall 2019

Homework #1

- 1. A solution of sodium bicarbonate is prepared by adding 45.00 g of sodium bicarbonate to a 1.00 L volumetric flask and adding distilled water until it reaches the 1.00 L mark. What is the concentration of sodium bicarbonate in units of (a) milligrams per liter, (b) molarity, (c) normality, and (d) milligrams per liter as CaCO₃? Show your work on attached pages.
- 2. Balance the following 5 chemical equations (i.e., determine the value of the stoichiometric coeffcients, x, y and z in each case:
 - a. $CaCl_2 + xNa_2CO_3 = yCaCO_3 + zNaCl$
 - b. $C_6H_{12}O_6 + xO_2 = yCO_2 + zH_2O$
 - c. $3NO_2 + xH_2O = yHNO_3 + zNO$
 - d. $2C_4H_{10} + xO_2 = yCO_2 + zH_2O$
 - e. $Al(OH)_3 = yAl^{3+} + zOH^{-1}$
- 3. You've just prepared a solution by dissolving 20 mg sodium sulfide (Na₂S), and 30 mg potassium sulfate dihydrate (K₂SO₄•2H₂O) in 1 Liter of distilled water.
 - a) What is the molar concentration of sodium sulfide in this solution?
 - b) What is the equivalent concentration of sodium sulfide in this solution?
 - c) What is the molar concentration of potassium in this solution?
 - d) What is the concentration of total sulfur in this solution in mg/L?
 - e) What is the concentration of reduced sulfur (i.e., S(-II)) in this solution in mg/L?
 - f) What is the theoretical TDS of this solution in mg/L?
- 4. If 200 mg of HCl is added to water to achieve a final volume of 1.00 L, what is the final pH?
- 5. What amount (mass, in mg) of NaOH (a strong base), would be required to neutralize the acid in Problem 4?
- 6. The concentration of a chemical degrades in water according to first-order kinetics. The degradation constant is 0.2 day^{-1} . If the initial concentration is 100.0 mg/L, (a) how many days are required for the concentration to reach 0.14 mg/L? Also (b) calculate the half-life $(t_{1/2})$ for this decay reaction.
- 7. Each mole of $CaF_2(s)$ dissolved yields 1 mole of Ca^{2+} and 2 moles of F⁻ (fluoride). The solubility product of calcium fluoride (CaF₂) is $3x10^{-11}$ at 25C. Could a fluoride concentration of 1.0 mg/L be obtained in water that contains 200 mg/L of calcium? Yes or no? Show your work.

Assigned: 9 Sept 19 Due: 20 Sept 19 Your Name:

<u>Answer Page</u> Fill in the boxes with the correct answer.

You will only get credit for a problem if you: (1) fill in the box with the correct answer in the units indicated, (2) your answer is legible, and (3) you attach page(s) with calculations backing up your answer.

Problem #

	а	mg/L
1	b	М
1	c	Ν
	d	mg/L as CaCO ₃

	а	1	CaCl ₂	Na ₂ CO ₃] =
	b	1	C6H12O6	O ₂	=
2	c	3	NO ₂	H ₂ O	=
	d	2	C4H10	O ₂	=
	e	1	Al(OH) ₃		=

CaCO ₃	NaCl
CO ₂	H ₂ O
HNO ₃	NO
CO ₂	H ₂ O
Al ³⁺	OH-

3	а	mМ
	b	meq/L
	с	mМ
	d	mg/L
	e	mg/L
	f	mg/L

4	pH units

5 mg

