Thrust 1: Selective Thermal Processing of Cellulosic Biomass and Lignin

Brent H. Shanks
Chemical and Biological Engineering
Iowa State University

Stefan Czernik
National Renewable Energy Laboratory
Department of Energy
Biomass Resources

2005 U.S. DOE and USDA “Billion Ton Study”

Corn (largest volume grain and source of EtOH in U.S.)

Soybeans, fats & greases (can make 6% of needed diesel fuel)

Lignocellulosic biomass (trees, grasses, agricultural residues); over 1 billion tons/year can be available in the U.S.

Food supplies

<20% of total biomass

Non food

80% of total biomass
Lignocellulosic Biomass

Cellulose: 38%–50%

Most abundant form of carbon in biosphere

Polymer of glucose

Hemicellulose: 23%–32%

Polymer of 5- and 6-carbon sugars

Xylose is the second most abundant sugar in the biosphere

Lignin: 15%–25%

Complex aromatic structure

p-hydroxyphenylpropene building blocks
Biomass Potential

Biomass is:

♣ Renewable
♣ Carbon-neutral
♣ Abundant
♣ The only sustainable source of hydrocarbons.

Biomass can:

♣ Be a source of fungible fuels
♣ Fill the gap between demand and availability of petroleum in the near/mid term.
♣ Serve as a renewable source of hydrogen in the long term.
Direct Production of Liquids from Biomass

Fast Pyrolysis
- 450-550 °C and 1 atm (maximize liquid)
- High heating rates and short residence time
- Rapid quench

\[
\text{CH}_{1.46}\text{O}_{0.67} \rightarrow 0.71\text{CH}_{1.98}\text{O}_{0.76} + 0.21\text{CH}_{0.1}\text{O}_{0.15} + 0.08\text{CH}_{0.44}\text{O}_{1.23}
\]

Biomass → Bio-oil + Char + Gas

Liquefaction (Aqueous Solvent)
- 120-200 atm
- 300-400 °C
- 5-20 min residence time

\[
\text{CH}_{1.46}\text{O}_{0.67} \rightarrow 0.63\text{CH}_{1.33}\text{O}_{0.16} + 0.23\text{CH}_{2.7}\text{O}_{1.22} + 0.13\text{CO}_2 + 0.01\text{CO}
\]

Biomass → Bio-oil + WSO + H_2O + Gas
Overall Product Distribution

- **Fast Pyrolysis**
 - 65% organics
 - 10% water (from rxn)
 - 12% char
 - 13% gases

- **Liquefaction**
 - 45% bio-oil
 - 25% gases (>90% CO2)
 - 30% aqueous phase
 - 20% water
 - 10% water soluble organics
Pyrolysis Pathways*

(Observed at very high heating rates)

Molten Biomass
$T \sim 430^\circ C$

Biomass
H^+, M^+
Crosslinking

H^+, M^+
Oligomers

Monomers/Isomers
Low Mol. Wt Species
Ring-opened Chains

Thermo-mechanical Ejection
Vaporization

Aerosols
High MW Species

Gases/Vapors

M$^+$: Catalyzed by Alkaline Cations
H^+: Catalyzed by Acids
TM$^+$: Catalyzed by Zero Valent Transition Metals

Reforming TM$^+$

Synthesis Gas

Volatile Products

CO + H$_2$

Char, CO$_2$, H$_2$O

Thermal Conversion Reactions

Primary Processes
- **Vapor Phase**
 - CO, CO₂, H₂O
- **Primary Liquids**
 - Condensed Oils (phenols, aromatics)
- **Solid Phase**
 - Biomass

Secondary Processes
- **Light HCs, Aromatics, & Oxygenates**
- **Olefins, Aromatics**
 - CO, H₂, CO₂, H₂O

Tertiary Processes
- **PNA’s, CO, H₂, CO₂, H₂O, CH₄**
- **CO, H₂, CO₂, H₂O**

Pyrolysis Severity
- Low P
- High P
Composition: Fast Pyrolysis Bio-Oil*

<table>
<thead>
<tr>
<th>Component</th>
<th>Wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>20-30</td>
</tr>
<tr>
<td>Lignin fragments: insoluble pyrolytic lignin</td>
<td>15-30</td>
</tr>
<tr>
<td>Aldehydes: formaldehyde, acetaldehyde, hydroxyacetaldelyde, glyoxal</td>
<td>10-20</td>
</tr>
<tr>
<td>Carboxylic acids: formic, acetic, propionic, butyric, pentanoic, hexanoic</td>
<td>10-15</td>
</tr>
<tr>
<td>Carbohydrates: celllobiosan, levoglucosan, oligosaccharides</td>
<td>5-10</td>
</tr>
<tr>
<td>Phenols: phenol, cresol, guaiacols, syringols</td>
<td>2-5</td>
</tr>
<tr>
<td>Furfurals</td>
<td>1-4</td>
</tr>
<tr>
<td>Alcohols: methanol, ethanol</td>
<td>2-5</td>
</tr>
<tr>
<td>Ketones: acetol (1-hydroxy-2-propanone), cyclopentanone</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Liquefaction Events

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Technique</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrastructure Changes</td>
<td>Thermal stress</td>
<td>Hemicellulose \rightarrow</td>
</tr>
<tr>
<td></td>
<td>Mechanical stress</td>
<td>Solubles</td>
</tr>
<tr>
<td></td>
<td>Solvolytic action</td>
<td>Cellulose \rightarrow Activated Lignin \rightarrow Modified</td>
</tr>
<tr>
<td>Chemical degradation</td>
<td>1. Hydrolysis with catalysts H^+</td>
<td>Sugars, aldehydes</td>
</tr>
<tr>
<td></td>
<td>OH^-</td>
<td>Acids</td>
</tr>
<tr>
<td></td>
<td>2. Neutral aqueous</td>
<td>Solubilized sugars, acids, aldehydes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Swelling, dehydration in amorphous regions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘Acid’ lignin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partially soluble</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attack by autohydrolysis products</td>
</tr>
<tr>
<td>Thermal decomposition 200-360 °C</td>
<td>1. Na_2CO_3, CO, OH^- catalyzed high pressures</td>
<td>Mixture of oxygenates derived from above + thermal cracking</td>
</tr>
<tr>
<td></td>
<td>2. Autohydrolytic decomposition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. H^+ transfer at high pressures</td>
<td></td>
</tr>
<tr>
<td>Hydrocracking 380–430 °C</td>
<td>H_2 + catalyst</td>
<td>Bio-oil</td>
</tr>
<tr>
<td></td>
<td>Catalytic cracking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>De-oxygenation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrogenolysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrogenation</td>
<td></td>
</tr>
</tbody>
</table>

HC = hemicellulose; C = cellulose; L = lignin.

Chornet and Overend; in Fundamentals of Thermochemical Biomass Conversion, Overend et al., ed. (1985) 967.
Biomass Liquefaction

Representative Bio-Oils*

<table>
<thead>
<tr>
<th>Property</th>
<th>Pyrolysis oil</th>
<th>Liquefaction oil</th>
<th>Heavy fuel oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture content, wt%</td>
<td>15-30</td>
<td>5.1</td>
<td>0.1</td>
</tr>
<tr>
<td>pH</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.2</td>
<td>1.1</td>
<td>0.94</td>
</tr>
<tr>
<td>Elemental composition, wt%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbon</td>
<td>54-58</td>
<td>73</td>
<td>85</td>
</tr>
<tr>
<td>hydrogen</td>
<td>5.5-7.0</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>oxygen</td>
<td>35-40</td>
<td>16</td>
<td>1.0</td>
</tr>
<tr>
<td>nitrogen</td>
<td>0-0.2</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>ash</td>
<td>0-0.2</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Higher heating value, MJ/kg</td>
<td>16-19</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>Viscosity (50 °C), cP</td>
<td>40-100</td>
<td>15,000 (at 61°C)</td>
<td>180</td>
</tr>
<tr>
<td>Solids, wt%</td>
<td>0.2-1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Distillation residue, wt%</td>
<td>Up to 50</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

*Czernik and Bridgwater; Energy Fuels 18 (2004) 590.
Elliott and Schiefelbein; Preprints of Papers - American Chemical Society, Division of Fuel Chemistry 34 (1989) 1160.
Feedstocks That Can Be Processed

• Fast Pyrolysis
 – Broad range of lignocellulosics
 – Dry material generally preferred

• Liquefaction
 – Broad range of lignocellulosics
 – Wet material readily handled
Positive Features of Bio-Oils

• Flexible for different feedstocks
• Increased energy density and liquid product
• Relatively simple processes – potential for distributed production
• Removes some oxygen
 – Fast pyrolysis primarily dehydration
 – Liquefaction decarboxylation and dehydration
Bio-Oil Challenges

• Fast Pyrolysis
 – stability
 – acidity
 – high oxygen content
 – upgrading required for use as fuel
 – chemical complexity

• Liquefaction
 – high viscosity
 – elevated oxygen content
 – upgrading required for use as fuel
 – chemical complexity
 – (high pressure)
Fast Pyrolysis: Bio-Oil Stability*

- Reactions:
 - Esterification of acids with alcohols
 - Transesterification of esters
 - Homopolymerization of aldehydes
 - Hydration of aldehydes or ketones
 - Hemiacetal formation with aldehydes and alcohols
 - Acetalization of aldehydes and alcohols
 - Phenol/aldehyde reactions to form resins
 - Polymerization of furan derivatives
 - Dimerization of nitrogen compounds from proteins with aldehydes

Fast Pyrolysis Bio-oil Fuel Applications

Heat and power production:

Furnaces, Boilers, Diesel engines, Turbines – demonstrated using standard equipment *(modifications are necessary for a long-duration operation)*

Upgrading to transport fuel:

Emulsification with diesel fuel *(high wear of the valves)*
Hydrotreating, hydrocracking
Catalytic vapor cracking *(low yields, high aromatics, rapid deactivation of catalysts)*
Economic Evaluation (1990)*

<table>
<thead>
<tr>
<th></th>
<th>Fast pyrolysis</th>
<th>Liquefaction in solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present</td>
<td>Potential</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>Potential</td>
</tr>
<tr>
<td>Total capital requirement ($US millions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary liquefaction</td>
<td>49.8</td>
<td>26.4</td>
</tr>
<tr>
<td>crude upgrading</td>
<td>46.6</td>
<td>34.3</td>
</tr>
<tr>
<td>product finishing</td>
<td>14.5</td>
<td>0.7</td>
</tr>
<tr>
<td>total</td>
<td>110.9</td>
<td>61.4</td>
</tr>
<tr>
<td>Production costs ($US million/year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fixed operating costs</td>
<td>14.48</td>
<td>10.77</td>
</tr>
<tr>
<td>variable operating costs</td>
<td>25.74</td>
<td>23.67</td>
</tr>
<tr>
<td>(feedstock costs)</td>
<td>(20.00)</td>
<td>(20.00)</td>
</tr>
<tr>
<td>capital charges</td>
<td>12.96</td>
<td>7.17</td>
</tr>
<tr>
<td>total production cost</td>
<td>53.18</td>
<td>41.61</td>
</tr>
<tr>
<td>Minimum selling price ($US/GJ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bio-oil</td>
<td>9.32</td>
<td>6.91</td>
</tr>
<tr>
<td>refined bio-oil</td>
<td>16.24</td>
<td>12.99</td>
</tr>
<tr>
<td>Process Thermal Efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(energy_{liquid products}/energy_{feed+inputs})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary product from liquefaction</td>
<td>0.61</td>
<td>0.68</td>
</tr>
<tr>
<td>finished product</td>
<td>0.52</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Liquefaction Economics*

Limitations for Fast Pyrolysis Bio-Oil*

Cost: 10% – 100% more than fossil fuel

Availability: limited supplies for testing

Standards: lack of standards and inconsistent quality inhibits wider usage

Compatibility: not with conventional fuels, dedicated fuel handling needed

User familiarity: very low

Image: poor

A.V. Bridgwater
Fundamental Challenges

• Fast pyrolysis: reaction system understanding
 – Reactor design
 – Connection to downstream processing
 – Product capture
 – Non-empirical reactor systems

• Fast pyrolysis: catalyst incorporation

• Liquefaction: reaction system understanding
 – Reactor design
 – Connection to downstream processing
 – Non-empirical reactor systems
What is next?

• Upgrading existing biomass-derived liquids
 • hydrodeoxygenation
 • decarboxylation
 • reactions with other oxygenates

• Modifications of existing processes
 • catalysts
 • secondary reactions

• Alternative deconstruction strategies?